

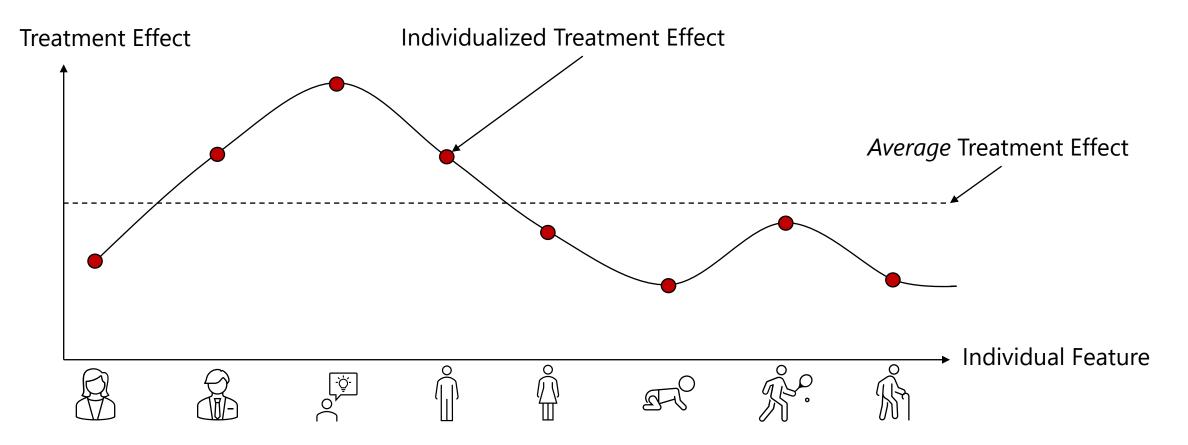
Reliable Machine Learning for Individualized Treatment Effect Estimation

Miruna Oprescu

Cornell University, Cornell Tech Committee: Nathan Kallus (Chair), Sarah Dean, Peter Frazier, Emma Pierson

Individualized Treatment Effects

- Applications in economics, healthcare, e-commerce, online platforms.
- Example: Treatment effect of 401(k) eligibility on net worth.



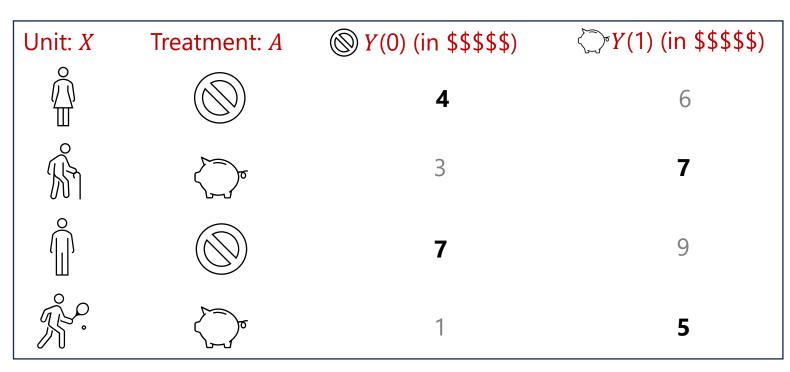
Standard Causal Inference Setting

- Treatment $A \in \{0, 1\}$, covariates $X \in \mathcal{X}$, potential outcomes $Y(0), Y(1) \in \mathbb{R}$.
- We want to estimate the conditional average treatment effect (CATE):

 $\tau(x) = \mathbb{E}[Y(1) - Y(0) \mid X = x]$

• But we only observe data: $Z_i = (X_i, A_i, Y_i) \sim (X, A, Y(A))$.

Example:
Effect of 401(k) eligibility
on net worth.



Standard Causal Inference Setting

• Most works assume ignorability (unconfoundedness):

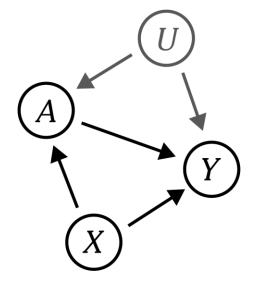
 $Y(0), Y(1) \perp A \mid X$, i.e., $U = \emptyset$.

Then, they *identify* the CATE $\tau(x)$ from data as:

 $\tau(x) = \mathbb{E}[Y(1) \mid X = x] - \mathbb{E}[Y(0) \mid X = x]$

 $= \mathbb{E}[Y | X = x, A = 1] - \mathbb{E}[Y | X = x, A = 0]$

- 1. Assumes effects are centered around the conditional mean and/or the mean is informative.
- 2. Ignorability is an untestable assumption!



Talk Overview

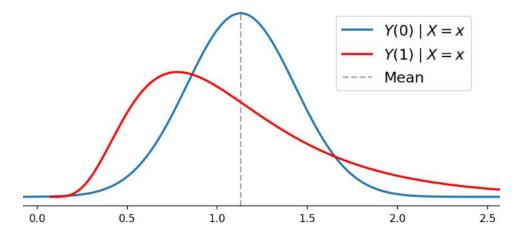
- 1. Beyond Conditional Averages: Robust and Agnostic Learning of Conditional Distributional Treatment Effects
 - N. Kallus, **M. Oprescu**. AISTATS 2023.
- 2. Sharp and Efficient Bounds on Heterogeneous Causal Effects Under Hidden Confounding
 - **M. Oprescu**, J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus, U. Shalit. ICML 2023.
- 3. Research Roadmap: Future Directions and Goals

Talk Overview

- 1. Beyond Conditional Averages: Robust and Agnostic Learning of Conditional Distributional Treatment Effects
 - N. Kallus, **M. Oprescu**. AISTATS 2023.
- 2. Sharp and Efficient Bounds on Heterogeneous Causal Effects Under Hidden Confounding
 - M. Oprescu, J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus, U. Shalit. ICML 2023.
- 3. Research Roadmap: Future Directions and Goals

Beyond Conditional Averages: Motivation

- Skewed outcome functions (e.g., income, platform usage)
- Equity considerations and risk quantification



Potential outcomes with the same conditional mean but different tail effects.

 Beyond the conditional mean effect: Conditional Distributional Treatment Effects (CDTEs)

Beyond Conditional Averages: CDTEs

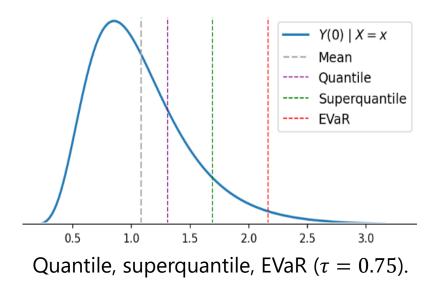
• For any distribution statistic $\kappa^*(F)$:

 $CDTE(X) = \kappa^* (F_{Y(1)|X}) - \kappa^* (F_{Y(0)|X})$

- Examples:
 - Conditional Average (CATE)
 - Conditional Quantiles (CQTE)
 - Conditional Superquantiles (CSQTE)

Also known as Conditional-Value-at-Risk (CVaR)

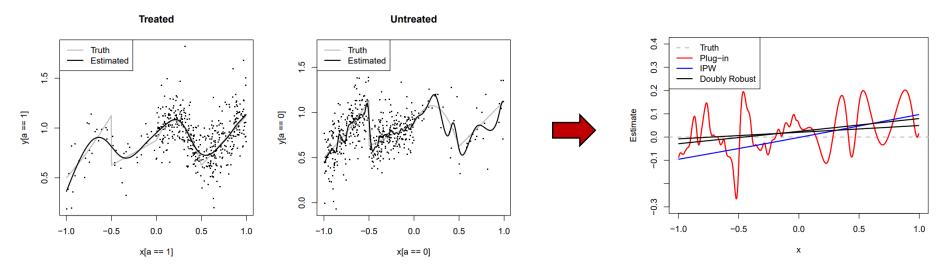
• f-risk measures from f-divergences (CfRTE) E.g., Entropic-Value-at-Risk (EVaR) from the KL divergence



CDTE Plugin Estimator

$$CDTE^{Plugin}(X) = \hat{\kappa}_1(X) - \hat{\kappa}_0(X)$$

- Weaknesses:
 - Can obscure the signal when the $\hat{\kappa}_a(X)$'s are more complex than the CDTE.
 - Not robust: difference of best estimators ≠ best estimator of difference.



Plugin bias illustration for CATE estimators (Kennedy, 2020).

CDTEs: General Framework

• Consider statistics that solve moment equations:

 $\mathbb{E}_F[\rho(Y,\kappa,h)] = \mathbf{0}$

where $h^*(F)$ is a set of nuisances.

- Examples
 - Average: $\rho(y,\mu) = y \mu$
 - Quantiles (level τ): $\rho(y,q) = \tau \mathbb{I}[y \le q]$
 - Superquantiles (level τ):

 $\rho(y,\mu,q) = \left((1-\tau)^{-1} y \mathbb{I}[y \ge q], \tau - \mathbb{I}[y \le q] \right) \in \mathbb{R}^2$

A Two-Step Procedure for CDTE Robust Estimation

1. Consider a pseudo-outcome* that targets the effect directly:

$$\psi(Z, \hat{e}, \hat{\alpha}, \hat{\nu}) = \hat{\kappa}_1(X) - \hat{\kappa}_0(X) - \frac{A - \hat{e}(X)}{\hat{e}(X)(1 - \hat{e}(X))} \hat{\alpha}_A(X)^T \rho(Y, \hat{\nu}_A(X))$$
plugin estimator bias correction

where e(X) = P(A = 1 | X), $v_a = (\kappa_a, h_a)$ and $\alpha_a(X)$ are additional nuisances learned on one sample.

2. Regress $\psi(Z, \hat{e}, \hat{\alpha}, \hat{\nu})$ on features $X \in \mathcal{X}$ in another sample.

Algorithm 1 CDTE LearnerInput: Data $\{(X_i, A_i, Y_i) : i \in \overline{1, n}\}$, folds $K \ge 2$, nuisance estimators, regression learner1: for $k \in \overline{1, K}$ do2: Use data $\{(X_i, A_i, Y_i) : i \ne k - 1 \pmod{K}\}$ to construct nuisance estimates $\hat{e}^{(k)}, \hat{\alpha}^{(k)}, \hat{\nu}^{(k)}$ 3: for $i = k - 1 \pmod{K}$ do set $\hat{\psi}_i = \psi(Z_i, \hat{e}^{(k)}, \hat{\alpha}^{(k)}, \hat{\nu}^{(k)})$ end for4: end for5: return $\widehat{\text{CDTE}}(x) = \widehat{\mathbb{E}}_n[\widehat{\psi} \mid X = x]$

* Derived from the efficient influence function (EIF) of $\mathbb{E}_F[CDTE(X)]$.

Reliable Machine Learning for Individualized Treatment Effect Estimation

CDTE Estimator Guarantees

Robustness:

• The error has a product structure so small errors in the nuisances lead to second-order errors in the CDTE estimates.

E.g., if all nuisances are estimated at a rate of at least $O(n^{-1/4})$

CDTEs are estimated at the rate $O(n^{-1/2})$.

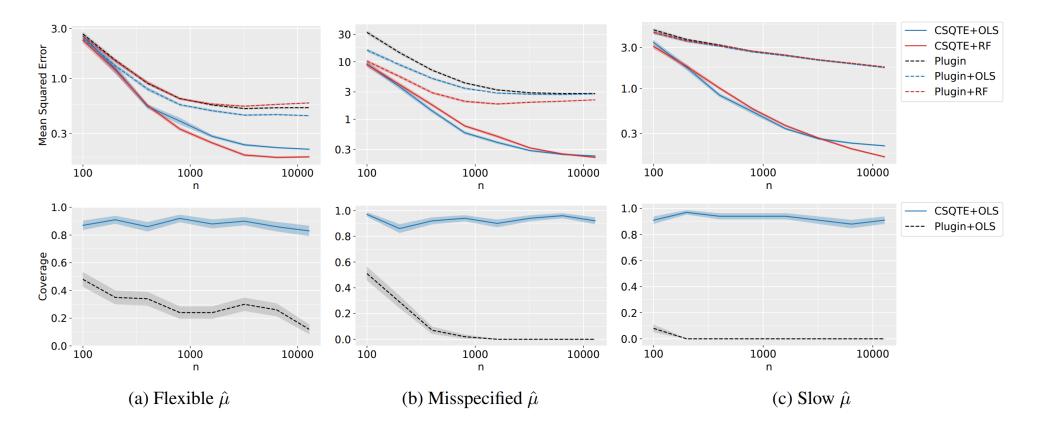
• There are many chances at consistency when some of the nuisances are misspecified.

Model Agnostic:

• Linear regression parameters are asymptotically normal with oracle variance

I.e., if we use OLS as the final stage, the confidence intervals are valid.

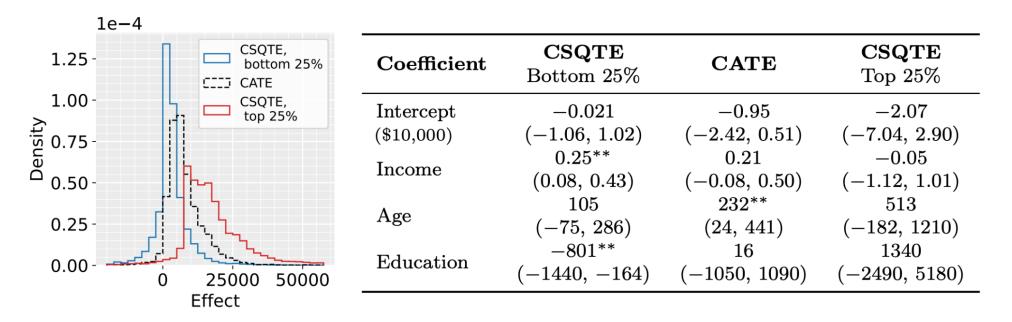
Empirical Example: CSQTE



Performance of CSQTE learner with flexible, misspecified or slow converging superquantile estimator $\hat{\mu}$. Second stages: flexible = Random Forest, misspecified = OLS, slow = Gaussian Kernel.

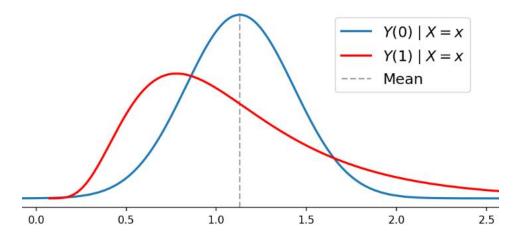
Case Study: Effect of 401(k) Eligibility

- Effect of 401(k) eligibility on net worth
- CSQTE on bottom and top 25% asset holders



Left: distribution of CATEs and CSQTEs with random forest last stage. Right: linear regression coefficients with OLS final stage.

Beyond Conditional Averages: TL;DR



Potential outcomes with the same conditional mean but different tail effects.

• When outcome distributions are skewed, it's essential to consider measures beyond conditional averages.

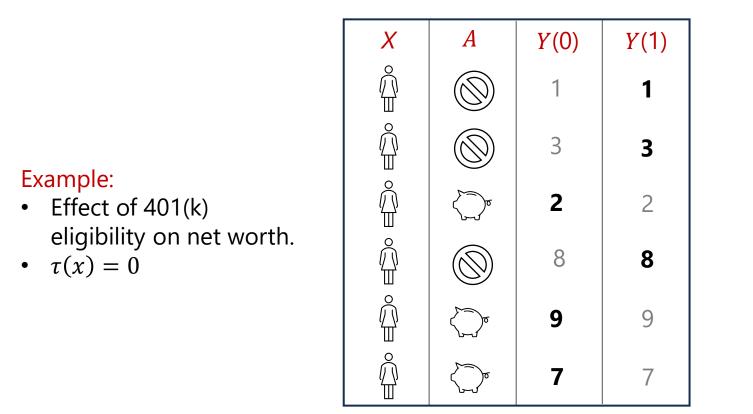
E.g.: quantiles, superquantiles, f-risk measures.

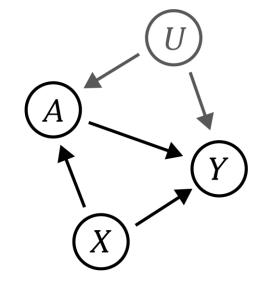
• We propose an ML method that enables reliable CDTE estimation by adapting to the complexity of the treatment effects, rather than just baseline functions.

Talk Overview

- 1. Beyond Conditional Averages: Robust and Agnostic Learning of Conditional Distributional Treatment Effects
 - N. Kallus, **M. Oprescu**. AISTATS 2023.
- 2. Sharp and Efficient Bounds on Heterogeneous Causal Effects Under Hidden Confounding
 - **M. Oprescu**, J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus, U. Shalit. ICML 2023.
- 3. Research Roadmap: Future Directions and Goals

Hidden Confounding



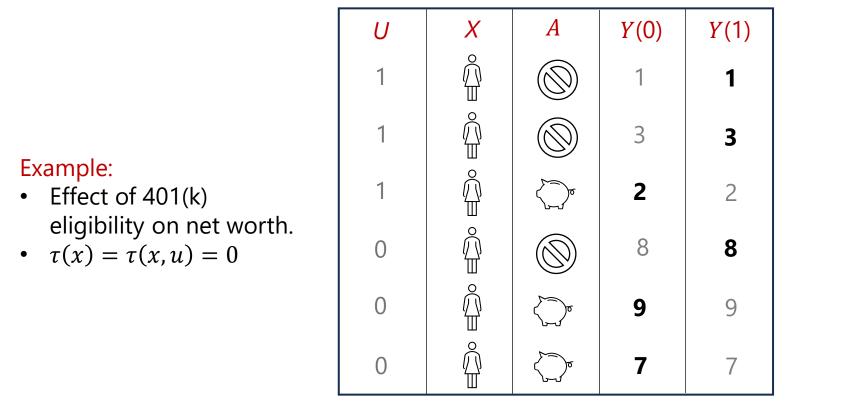


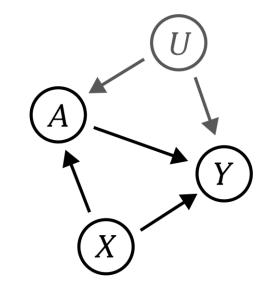
Assuming no unobserved confounding,

$$\hat{\tau}(x) = \frac{2+9+7}{3} - \frac{1+8+3}{3} = 2$$

Hidden Confounding

1





• Assuming no other unobserved confounding,

$$\hat{\tau}(x,1) = 2 - \frac{1+3}{2} = 0, \qquad \hat{\tau}(x,0) = 8 - \frac{7+9}{2} = 0$$

Reliable Machine Learning for Individualized Treatment Effect Estimation

Sensitivity Models for Hidden Confounding

What if we make assumptions about the strength of the unobserved confounding *U*?

- Let e(x) = P(A = 1 | X = x), e(x, u) = P(A = 1 | X = x, U = u).
- Marginal Sensitivity Model (MSM) (Tan, 2006): Assume

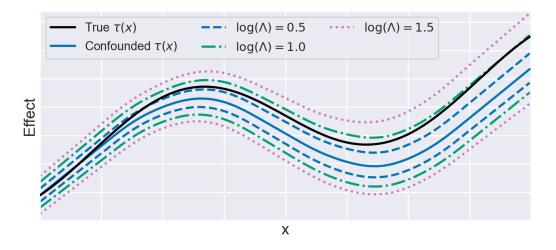
$$\Lambda^{-1} \leq \frac{e(x,u)}{1 - e(x,u)} \Big/ \frac{e(x)}{1 - e(x)} \leq \Lambda$$

for a user-specified Λ .

- Can be seen as an odds ratio.
- Ratio can be replaced with a divergence between e(x) and e(x, u) to obtain other sensitivity models.
- Under the MSM, we can identify *informative bounds* $\tau^+(x)$, $\tau^-(x)$ on $\tau(x)$.

MSM How-To Guide

1. Estimate/pick a Λ and obtain bounds on the CATE.



Example of CATE bounds for different values of Λ .

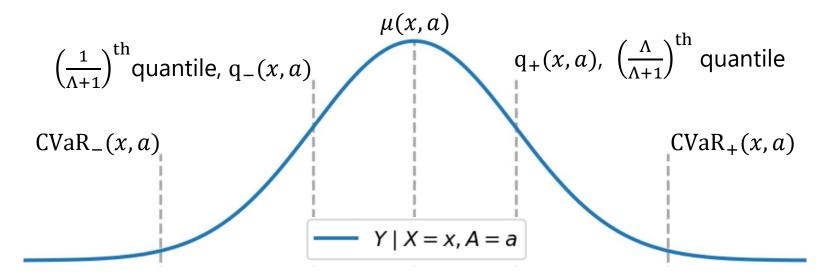
- 2. Find the value of Λ where the treatment effects change sign.
 - Cornfield et al. (1959): studied the effect of smoking on lung cancer. Found confounding had to be 9 times larger in smokers (Λ=9) than in nonsmokers to negate the measured effect.

Bounds Identification Under The MSM

Result 1 (Dorn et al., 2021). $\mu(x, a) = \mathbb{E}[Y | X = x, A = a]$ and $Y^{\pm}(x, a)$ is the upper (+)/ lower (-) sharp bound of $\mathbb{E}[Y(a) | X = x]$. Then:

$$Y^{+}(x, 1) = e(x)\mu(x, 1) + (1 - e(x))\rho_{+}(x, 1)$$
$$Y^{-}(x, 0) = (1 - e(x))\mu(x, 0) + e(x)\rho_{-}(x, 0)$$
$$\tau^{+}(x) = Y^{+}(x, 1) - Y^{-}(x, 0)$$

where $\rho_{\pm}(x, a) = \Lambda^{-1} \mu(x, a) + (1 - \Lambda^{-1}) CVaR_{\pm}(x, a).$



B-Learner: Bound Estimation Under The MSM

• Plug-in estimator: estimate e(x), $\mu(x, a)$, $\rho_{\pm}(x, a)$ and "plug" them into $Y^{\pm}(x, a)$:

$$\hat{\tau}_{\text{Plugin}}^+(x) = \hat{Y}^+(x,1) - \hat{Y}^-(x,0)$$

B-Learner: Bound Estimation Under The MSM

- A two-step procedure for robust and reliable estimation:
 - 1. Learn nuisances $\hat{\eta}(x) = (\hat{e}(x), \hat{\mu}(x, a), \hat{\rho}_{\pm}(x, a))$ on one sample.
 - 2. Correct bias in another sample using insights from CDTE estimation and regress the pseudo-outcome $\phi_{\tau}^+(Z,\hat{\eta})$ on features $X \in \mathcal{X}$.

Algorithm 1 The B-Learner

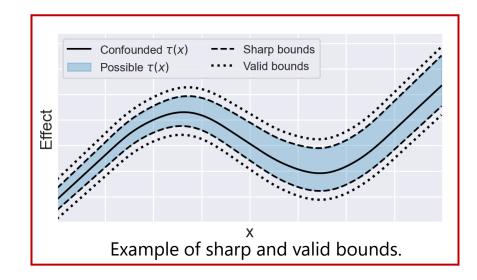
input Data { $(X_i, A_i, Y_i) : i \in \{1, ..., n\}$ }, folds $K \ge 2$, nuisance estimators, regression learner $\widehat{\mathbb{E}}_n$ 1: for $k \in \{1, ..., K\}$ do 2: Use data { $(X_i, A_i, Y_i) : i \ne k - 1 \pmod{K}$ } to construct nuisance estimates $\widehat{\eta}^{(k)} = (\widehat{e}^{(k)}, \widehat{q}^{(k)}, \widehat{\rho}^{(k)})$ 3: for $i = k - 1 \pmod{K}$ do 4: Set $\widehat{\phi}_{\tau,i}^+ = \phi_{\tau}^+(Z_i, \widehat{\eta}^{(k)})$ 5: end for 6: end for output $\widehat{\tau}^+(x) = \widehat{\mathbb{E}}_n[\widehat{\phi}_{\tau}^+ \mid X = x]$

Theoretical Guarantees

• The (unsigned) bias from the first stage is:

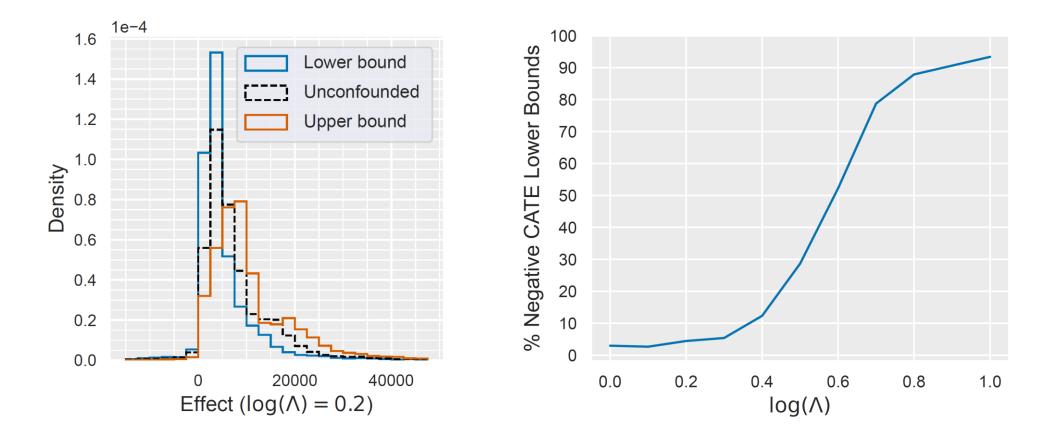
 $\mathcal{E}(x) = \Sigma_{a=0}^{1}(|\hat{e}(x) - e(x)||\hat{\rho}(x,a) - \rho(x,a)| + (\hat{q}(x,a) - q(x,a))^{2})$

- For an **ERM**-based final stage estimator, the B-Learner deviates from the oracle estimator by $\|\mathcal{E}(x)\|_2$
- Corollaries:
 - **1.** Sharpness: \hat{q} and either \hat{e} or $\hat{\rho}$ are consistent
 - $\Rightarrow \hat{\tau}^+(x)$ consistent.
 - **2. Validity:** \hat{q} is inconsistent \Rightarrow bounds still **valid** on average.
 - **2. Efficiency:** If nuisances are $o_P(n^{-1/2(2+r)})$, error is dominated by target class complexity.

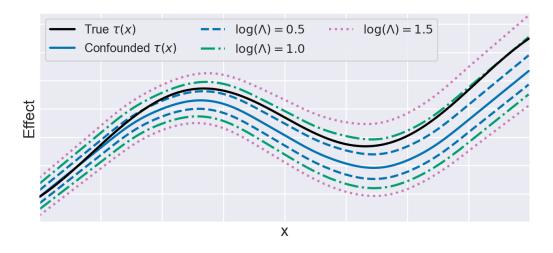


Case Study: Effect of 401(k) Eligibility

• B-Learners for different Λ values.



B-Learner: TL;DR



CATE bounds with unobserved confounding.

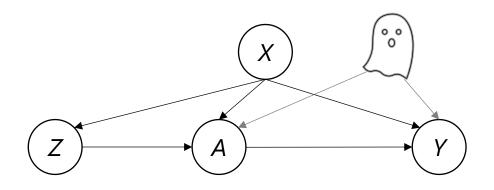
- Lack of unobserved confounding enables causal inference, but it is an untestable assumption.
- Under assumptions about the strength of the unobserved confounding, we can learn *bounds* on $\tau(x)$.
- We propose the B-Learner, a flexible meta-learner that learns valid, sharp and efficient bounds from data.

Talk Overview

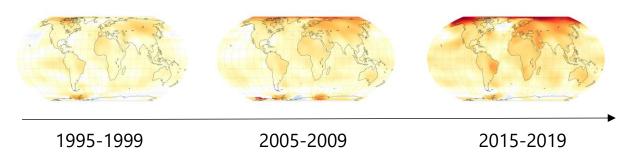
- 1. Beyond Conditional Averages: Robust and Agnostic Learning of Conditional Distributional Treatment Effects
 - N. Kallus, **M. Oprescu**. AISTATS 2023.
- 2. Sharp and Efficient Bounds on Heterogeneous Causal Effects Under Hidden Confounding
 - M. Oprescu, J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus, U. Shalit. ICML 2023.
- 3. Research Roadmap: Future Directions and Goals

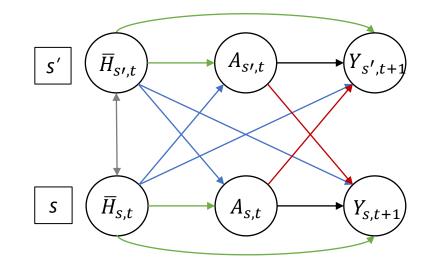
Future Research Directions

1. Causal inference in encouragement designs with weak instruments.



- 2. Causal inference for spatio-temporal data.
 - E.g. effect of temperature on severe weather events.





Acknowledgments

Special thanks to my committee:

Nathan Kallus (Chair), Sarah Dean, Peter Frazier, Emma Pierson.

Collaborators on this work (in alphabetical order):

Jacob Dorn, Marah Ghoummaid, Andrew Jesson, Nathan Kallus, and Uri Shalit.

Funding support:

The Department of Energy Computational Science Graduate Fellowship.

Appendix

- B-Learner
 - Pseudo-outcome
 - Theoretical guarantees (full)
 - Oracle property
 - Comparison with other works

B-Learner

- 1. Estimate nuisances $\hat{\eta} = (\hat{e}(x), \hat{q}_{\pm}(x, a), \hat{\rho}_{\pm}(x, a))$ and get pseudo-outcomes: $Y^{+}(x, 1) \rightarrow \phi_{1}^{+}(Z, \hat{\eta}) = AY + (1 - A)\hat{\rho}_{+}(X, 1) + \frac{(1 - \hat{e}(X))A}{\hat{e}(X)}(R_{+}(Z, \hat{q}_{+}(X, 1)) - \hat{\rho}_{+}(X, 1))$ $Y^{-}(x, 0) \rightarrow \phi_{0}^{-}(Z, \hat{\eta}) = (1 - A)Y + A\hat{\rho}_{-}(X, 0) + \frac{\hat{e}(X)(1 - A)}{1 - \hat{e}(X)}(R_{-}(Z, \hat{q}_{-}(X, 0)) - \hat{\rho}_{-}(X, 0))$ $\tau^{+}(x) \rightarrow \phi_{\tau}^{+}(Z, \hat{\eta}) = \phi_{1}^{+}(Z, \hat{\eta}) - \phi_{0}^{-}(Z, \hat{\eta})$ where $\mathbb{E}[R_{+}(Z, q_{+}) \mid X = x, A = a] = \rho_{+}(x, a).$
- 2. Regress pseudo-outcome $\phi_{\tau}^+(Z, \hat{\eta})$ on features $X \in \mathcal{X}$ in another sample.

Algorithm 1 The B-Learner

input Data { $(X_i, A_i, Y_i) : i \in \{1, ..., n\}$ }, folds $K \ge 2$, nuisance estimators, regression learner $\widehat{\mathbb{E}}_n$ 1: for $k \in \{1, ..., K\}$ do 2: Use data { $(X_i, A_i, Y_i) : i \ne k - 1 \pmod{K}$ } to construct nuisance estimates $\widehat{\eta}^{(k)} = (\widehat{e}^{(k)}, \widehat{q}^{(k)}, \widehat{\rho}^{(k)})$ 3: for $i = k - 1 \pmod{K}$ do 4: Set $\widehat{\phi}_{\tau,i}^+ = \phi_{\tau}^+(Z_i, \widehat{\eta}^{(k)})$ 5: end for 6: end for output $\widehat{\tau}^+(x) = \widehat{\mathbb{E}}_n[\widehat{\phi}_{\tau}^+ \mid X = x]$

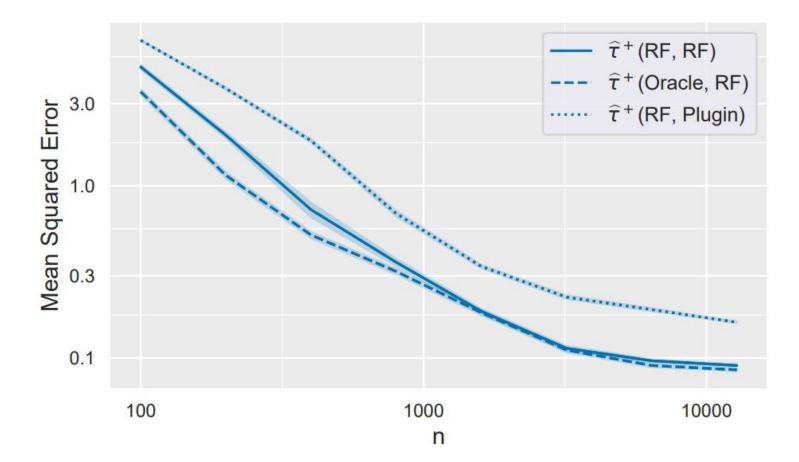
Sharp and Efficient Bounds on Heterogeneous Causal Effects Under Hidden Confounding

Theoretical Guarantees

- The (unsigned) bias from the first stage is: $\mathcal{E}(x) = \Sigma_{a=0}^{1}(|\hat{e}(x) - e(x)||\hat{\rho}(x,a) - \rho(x,a)| + (\hat{q}(x,a) - q(x,a))^{2})$
- Consider an **ERM**-based second stage estimator $\widehat{\mathbb{E}}_n$ with function class \mathcal{F} bracketing entropy $\log N_{[]}(\mathcal{F}, \epsilon) \leq \epsilon^{-r}$. We have L_2 rate guarantees: $\|\widehat{\tau}^+(x) - \tau(x)\| \leq O_P \left(n^{-\frac{1}{2+r}}\right) + \|\mathcal{E}(x)\|$
- Corollaries:
 - **1.** Sharpness: If \hat{q} and either \hat{e} or $\hat{\rho}$ are consistent, so is $\hat{\tau}^+(x)$.
 - **2.** Validity: If \hat{q} is inconsistent, the bounds are still valid on average.
 - **3.** Quasi-oracle efficiency: If nuisances are estimated at L₂ rates of $o_P(n^{-\frac{1}{2(2+r)}})$, the estimation error is dominated by the complexity of the target class.

Empirical Evidence: Oracle Property

 $A \sim \text{Bernoulli}(\text{logit}(0.75X_0 + 0.5))$ $Y \sim \mathcal{N}((2A - 1)(X_0 + 1) - 2\sin((4A - 2)X_0), 1)$



Empirical Evidence: Comparisons with Other Works

