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Individualized Treatment Effects

• Applications in economics, healthcare, e-commerce, online platforms.

• Example: Treatment effect of 401(k) eligibility on net worth.

Individual Feature

Treatment Effect Individualized Treatment Effect

Average Treatment Effect
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Standard Causal Inference Setting

• Treatment 𝐴 ∈ {0, 1}, covariates 𝑋 ∈ 𝒳, potential outcomes 𝑌 0 , 𝑌 1 ∈ ℝ.

• We want to estimate the conditional average treatment effect (CATE):

𝜏 𝑥 = 𝔼 𝑌 1 − 𝑌 0 𝑋 = 𝑥

• But we only observe data: 𝑍𝑖 = 𝑋𝑖 , 𝐴𝑖 , 𝑌𝑖 ∼ (𝑋, 𝐴, 𝑌(𝐴)).

Example: 

Effect of 401(k) eligibility 

on net worth.

Treatment: 𝐴Unit: 𝑋 𝑌(0) (in $$$$$)
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Standard Causal Inference Setting

• Most works assume ignorability (unconfoundedness): 

𝑌 0 , 𝑌 1 ⊥ 𝐴 ∣ 𝑋, i.e., 𝑈 = ∅.

     Then, they identify the CATE 𝜏 𝑥  from data as:

               𝜏 𝑥 = 𝔼 𝑌 1 𝑋 = 𝑥 − 𝔼 𝑌 0 𝑋 = 𝑥

                       = 𝔼 𝑌 𝑋 = 𝑥, 𝐴 = 1 − 𝔼 𝑌 𝑋 = 𝑥, 𝐴 = 0

• Two issues with this approach:

1. Assumes effects are centered around the conditional 

mean and/or the mean is informative.

2. Ignorability is an untestable assumption!
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Talk Overview

1. Beyond Conditional Averages: Robust and Agnostic Learning of 

Conditional Distributional Treatment Effects

• N. Kallus, M. Oprescu. AISTATS 2023.

2. Sharp and Efficient Bounds on Heterogeneous Causal Effects Under Hidden 

Confounding

• M. Oprescu, J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus, U. Shalit. ICML 2023.

3. Research Roadmap: Future Directions and Goals



Miruna Oprescu, Cornell Tech Reliable Machine Learning for Individualized Treatment Effect Estimation 6

Talk Overview

1. Beyond Conditional Averages: Robust and Agnostic Learning of 

Conditional Distributional Treatment Effects

• N. Kallus, M. Oprescu. AISTATS 2023.

2. Sharp and Efficient Bounds on Heterogeneous Causal Effects Under Hidden 

Confounding

• M. Oprescu, J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus, U. Shalit. ICML 2023.

3. Research Roadmap: Future Directions and Goals



Miruna Oprescu, Cornell Tech Reliable Machine Learning for Individualized Treatment Effect Estimation 7

Beyond Conditional Averages: Motivation

• Skewed outcome functions (e.g., income, platform usage)

• Equity considerations and risk quantification

• Beyond the conditional mean effect:

       Conditional Distributional Treatment Effects (CDTEs)

Potential outcomes with the same conditional mean but different tail effects.
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Beyond Conditional Averages: CDTEs

• For any distribution statistic 𝜅∗ 𝐹 :

𝐶𝐷𝑇𝐸 𝑋 = 𝜅∗ 𝐹𝑌 1 ∣𝑋 − 𝜅∗(𝐹𝑌 0 ∣𝑋)

• Examples:

• Conditional Average (CATE)

• Conditional Quantiles (CQTE)

• Conditional Superquantiles (CSQTE)

 Also known as Conditional-Value-at-Risk (CVaR)

• f-risk measures from f-divergences (CfRTE)

E.g., Entropic-Value-at-Risk (EVaR) from the KL 

divergence

Quantile, superquantile, EVaR (𝜏 = 0.75).
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CDTE Plugin Estimator

𝐶𝐷𝑇𝐸𝑃𝑙𝑢𝑔𝑖𝑛 𝑋 = Ƹ𝜅1 𝑋 − Ƹ𝜅0(𝑋)

• Weaknesses:

• Can obscure the signal when the Ƹ𝜅𝑎 𝑋 ’s are more complex than the CDTE.

• Not robust: difference of best estimators ≠ best estimator of difference.

Plugin bias illustration for CATE estimators (Kennedy, 2020).
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CDTEs: General Framework

• Consider statistics that solve moment equations:

𝔼𝐹 𝜌 𝑌, 𝜅, ℎ = 𝟎

where ℎ∗ 𝐹  is a set of nuisances. 

• Examples

• Average: 𝜌 𝑦, 𝜇 = 𝑦 − 𝜇

• Quantiles (level 𝜏): 𝜌 𝑦, 𝑞 = 𝜏 − 𝕀[𝑦 ≤ 𝑞]

• Superquantiles (level 𝜏): 

𝜌 𝑦, 𝜇, 𝑞 = 1 − 𝜏 −1𝑦𝕀 𝑦 ≥ 𝑞 , 𝜏 − 𝕀 𝑦 ≤ 𝑞 ∈ ℝ2
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A Two-Step Procedure for CDTE Robust Estimation

1. Consider a pseudo-outcome* that targets the effect directly:

𝜓 𝑍, Ƹ𝑒, ො𝛼, Ƹ𝜈 = Ƹ𝜅1 𝑋 − Ƹ𝜅0 𝑋 −
𝐴 − Ƹ𝑒 𝑋

Ƹ𝑒 𝑋 1 − Ƹ𝑒 𝑋
ො𝛼𝐴 𝑋 𝑇𝜌(𝑌, Ƹ𝜈𝐴(𝑋))

     where 𝑒 𝑋 = 𝑃(𝐴 = 1 ∣ 𝑋), 𝜈𝑎 = 𝜅𝑎 , ℎ𝑎  and 𝛼𝑎 𝑋  are additional nuisances        

     learned on one sample.

2. Regress 𝜓 𝑍, Ƹ𝑒, ො𝛼, Ƹ𝜈  on features 𝑋 ∈ 𝒳 in another sample.

* Derived from the efficient influence function (EIF) of 𝔼𝐹[𝐶𝐷𝑇𝐸 𝑋 ].

plugin estimator bias correction
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CDTE Estimator Guarantees

Robustness: 

• The error has a product structure so small errors in the nuisances lead to 

second-order errors in the CDTE estimates.

 E.g., if all nuisances are estimated at a rate of at least 𝑂 𝑛−1/4

          CDTEs are estimated at the rate 𝑂 𝑛−1/2  .

• There are many chances at consistency when some of the nuisances are 

misspecified.

Model Agnostic: 

• Linear regression parameters are asymptotically normal with oracle variance 

 I.e., if we use OLS as the final stage, the confidence intervals are valid.
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Empirical Example: CSQTE

Performance of CSQTE learner with flexible, misspecified or slow converging superquantile estimator Ƹ𝜇. 

Second stages: flexible = Random Forest, misspecified = OLS, slow = Gaussian Kernel.   
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Case Study: Effect of 401(k) Eligibility

• Effect of 401(k) eligibility on net worth

• CSQTE on bottom and top 25% asset holders

Left: distribution of CATEs and CSQTEs with random forest last stage. 

Right: linear regression coefficients with OLS final stage.
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Beyond Conditional Averages: TL;DR

• When outcome distributions are skewed, it's essential to consider measures 

beyond conditional averages.

  E.g.: quantiles, superquantiles, f-risk measures.

• We propose an ML method that enables reliable CDTE estimation by adapting 

to the complexity of the treatment effects, rather than just baseline functions.

Potential outcomes with the same conditional mean but different tail effects.
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Talk Overview
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Hidden Confounding 

• Assuming no unobserved confounding,

Ƹ𝜏 𝑥 =
2 + 9 + 7

3
−

1 + 8 + 3

3
= 2

𝐴X 𝑌(0)

1

𝑌(1)
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7

9

Example: 

• Effect of 401(k) 

eligibility on net worth.

• 𝜏 𝑥 = 0
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Hidden Confounding 

• Assuming no other unobserved confounding,

Ƹ𝜏 𝑥, 1 = 2 −
1 + 3

2
= 0, Ƹ𝜏 𝑥, 0 = 8 −

7 + 9

2
= 0

𝐴X 𝑌(0)
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Example: 

• Effect of 401(k) 

eligibility on net worth.

• 𝜏 𝑥 = 𝜏 𝑥, 𝑢 = 0
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Sensitivity Models for Hidden Confounding

What if we make assumptions about the strength of the unobserved 

confounding 𝑈?

• Let 𝑒 𝑥 = 𝑃 𝐴 = 1 𝑋 = 𝑥 , 𝑒 𝑥, 𝑢 = 𝑃(𝐴 = 1 ∣ 𝑋 = 𝑥, 𝑈 = 𝑢). 

• Marginal Sensitivity Model (MSM) (Tan, 2006): Assume

Λ−1 ≤ ൘
𝑒(𝑥, 𝑢)

1 − 𝑒(𝑥, 𝑢)

𝑒(𝑥)

1 − 𝑒(𝑥)
≤ Λ

    for a user-specified Λ. 

• Can be seen as an odds ratio.

• Ratio can be replaced with a divergence between 𝑒(𝑥) and 𝑒 𝑥, 𝑢  to obtain other 

sensitivity models. 

• Under the MSM, we can identify informative bounds 𝜏+ 𝑥 , 𝜏− 𝑥  on 𝜏(𝑥).
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MSM How-To Guide

1. Estimate/pick a Λ and obtain bounds on the CATE.  

2. Find the value of Λ where the treatment effects change sign.

• Cornfield et al. (1959): studied the effect of smoking on lung cancer. Found 

confounding had to be 9 times larger in smokers (Λ=9) than in non-

smokers to negate the measured effect.  

Example of CATE bounds for different values of Λ.
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Bounds Identification Under The MSM

Result 1 (Dorn et al., 2021). 𝜇 𝑥, 𝑎 = 𝔼[𝑌 ∣ 𝑋 = 𝑥, 𝐴 = 𝑎] and 𝑌± 𝑥, 𝑎  is the upper (+)/ 

lower (-) sharp bound of 𝔼[𝑌(𝑎) ∣ 𝑋 = 𝑥]. Then:

𝒀+ 𝒙, 𝟏 = 𝑒 𝑥 𝜇 𝑥, 1 + 1 − 𝑒 𝑥 𝜌+ 𝑥, 1

𝒀− 𝒙, 𝟎 = 1 − 𝑒 𝑥 𝜇 𝑥, 0 + 𝑒 𝑥 𝜌− 𝑥, 0

                     𝝉+ 𝒙 =  𝒀+ 𝒙, 𝟏  - 𝒀− 𝒙, 𝟎

where 𝜌± 𝑥, 𝑎 = Λ−1𝜇 𝑥, 𝑎 + 1 − Λ−1 𝐶𝑉𝑎𝑅±(𝑥, 𝑎).

𝜇(𝑥, 𝑎)

CVaR+(𝑥, 𝑎) 

1

Λ+1

th
quantile, q−(𝑥, 𝑎) 

CVaR−(𝑥, 𝑎) 

q+(𝑥, 𝑎),  
Λ

Λ+1

th
 quantile
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B-Learner: Bound Estimation Under The MSM

• Plug-in estimator: estimate 𝑒 x , 𝜇 𝑥, 𝑎 , 𝜌±(𝑥, 𝑎) and “plug” them into 𝑌± 𝑥, 𝑎 :

Ƹ𝜏Plugin
+ 𝑥 =  ෠𝑌+ 𝑥, 1  - ෠𝑌− 𝑥, 0
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B-Learner: Bound Estimation Under The MSM

• A two-step procedure for robust and reliable estimation:

1. Learn nuisances Ƹ𝜂 𝑥 = ( Ƹ𝑒 x , Ƹ𝜇 𝑥, 𝑎 , ො𝜌± 𝑥, 𝑎 ) on one sample.

2. Correct bias in another sample using insights from CDTE estimation and 

regress the pseudo-outcome 𝜙𝜏
+ 𝑍, Ƹ𝜂  on features 𝑋 ∈ 𝒳.
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Theoretical Guarantees

• The (unsigned) bias from the first stage is:

     ℰ 𝑥 = Σ𝑎=0
1 ( Ƹ𝑒 𝑥 − 𝑒 𝑥 ො𝜌 𝑥, 𝑎 − 𝜌 𝑥, 𝑎  + ො𝑞 𝑥, 𝑎 − 𝑞 𝑥, 𝑎

2
)

• For an ERM-based final stage estimator, the B-Learner deviates from the oracle 

estimator by ℰ 𝑥 2

• Corollaries: 

1. Sharpness: ො𝑞 and either Ƹ𝑒 or ො𝜌 are consistent 

⇒ Ƹ𝜏+(𝑥) consistent.

2. Validity: ො𝑞 is inconsistent 

     ⇒ bounds still valid on average.

2. Efficiency: If nuisances are 𝑜𝑃 𝑛−1/2(2+𝑟) , 

error is dominated by target class complexity. Example of sharp and valid bounds. 
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Case Study: Effect of 401(k) Eligibility

• B-Learners for different Λ values.
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B-Learner: TL;DR

• Lack of unobserved confounding enables causal inference, but it is an 

untestable assumption.

• Under assumptions about the strength of the unobserved confounding, we can 

learn bounds on 𝜏(𝑥).

• We propose the B-Learner, a flexible meta-learner that learns valid, sharp and 

efficient bounds from data. 

CATE bounds with unobserved confounding.
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Future Research Directions

1. Causal inference in encouragement designs with weak instruments.

2. Causal inference for spatio-temporal data.

• E.g. effect of temperature on severe weather events.
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Appendix

• B-Learner 

• Pseudo-outcome

• Theoretical guarantees (full)

• Oracle property

• Comparison with other works
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B-Learner

1. Estimate nuisances Ƹ𝜂 = ( Ƹ𝑒 𝑥 , ො𝑞± 𝑥, 𝑎 , ො𝜌± 𝑥, 𝑎 ) and get pseudo-outcomes: 

𝒀+ 𝒙, 𝟏  → 𝝓𝟏
+ 𝒁, ෝ𝜼 = 𝐴𝑌 + 1 − 𝐴 ො𝜌+ 𝑋, 1 +

1− Ƹ𝑒 𝑋 𝐴

Ƹ𝑒 𝑋
𝑅+ 𝑍, ො𝑞+(𝑋, 1) − ො𝜌+(𝑋, 1)

𝒀− 𝒙, 𝟎  →  𝝓𝟎
− 𝒁, ෝ𝜼 = 1 − 𝐴 𝑌 + 𝐴 ො𝜌− 𝑋, 0 + Ƹ𝑒(𝑋)(1−𝐴)

1− Ƹ𝑒(𝑋)
𝑅− 𝑍, ො𝑞−(𝑋, 0) − ො𝜌−(𝑋, 0)

    𝝉+ 𝒙  → 𝝓𝝉
+ 𝒁, ෝ𝜼 = 𝝓𝟏

+ 𝒁, ෝ𝜼  - 𝝓𝟎
− 𝒁, ෝ𝜼

where 𝔼[𝑅± 𝑍, 𝑞± ∣ 𝑋 = 𝑥, 𝐴 = 𝑎] = 𝜌± 𝑥, 𝑎 .

2. Regress pseudo-outcome 𝝓𝝉
+ 𝒁, ෝ𝜼  on features 𝑋 ∈ 𝒳 in another sample.
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Theoretical Guarantees

• The (unsigned) bias from the first stage is:

ℰ 𝑥 = Σ𝑎=0
1 ( Ƹ𝑒 𝑥 − 𝑒 𝑥 ො𝜌 𝑥, 𝑎 − 𝜌 𝑥, 𝑎 + ො𝑞 𝑥, 𝑎 − 𝑞 𝑥, 𝑎

2
)

• Consider an ERM-based second stage estimator ෡𝔼𝑛 with function class ℱ 

bracketing entropy log 𝑁[] ℱ, 𝜖 ≤ 𝜖−𝑟 . We have L2 rate guarantees:

Ƹ𝜏+(𝑥) − 𝜏(𝑥) ≤ 𝑂𝑃 𝑛−
1

2+𝑟 + ℰ 𝑥

• Corollaries: 

1. Sharpness: If ො𝑞 and either Ƹ𝑒 or ො𝜌 are consistent, so is Ƹ𝜏+(𝑥).

2. Validity: If ො𝑞 is inconsistent, the bounds are still valid on average.

3. Quasi-oracle efficiency: If nuisances are estimated at L2 rates of 

𝑜𝑃 𝑛
−

1

2(2+𝑟) , the estimation error is dominated by the complexity of the 

target class. 
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Empirical Evidence: Oracle Property

𝐴 ∼ Bernoulli logit(0.75𝑋0 + 0.5)

𝑌 ∼ 𝒩( 2𝐴 − 1 𝑋0 + 1 − 2 sin 4𝐴 − 2 𝑋0 , 1)
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Empirical Evidence: Comparisons with Other Works
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