

Beyond Conditional Averages: Robust and Agnostic Learning of Conditional Distributional Treatment Effects

Treatment Effects

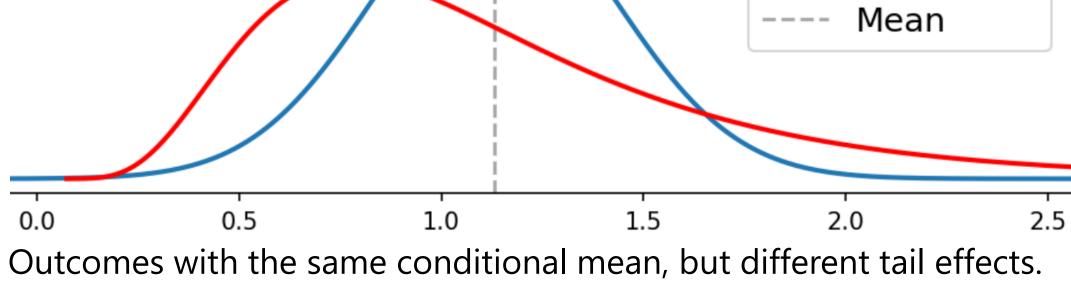
- Binary intervention ("treatment") $A \in \{0, 1\}$, features $X \in \mathcal{X}$, potential outcomes $Y(0), Y(1) \in \mathbb{R}$ under A.
- We want to describe differences in the outcome distributions $F_{Y(1)|X}$ and $F_{Y(0)|X}$.
- Problem #1. For a X_i , we only observe Y(0) or Y(1), not both. Data is:

 $Z_i = (X_i, A_i, Y_i) \sim (X, A, Y(A))$

- **Problem #2.** Correlation \neq Causation. Selection bias: $e^{*}(X) = \mathbb{P}(A = 1 | X)$
- Problem #3. Literature focuses mainly on averages: $\mathbb{E}_F[Y(1) \mid X = x] - \mathbb{E}_F[Y(1) \mid X = x]$

Beyond Averages: Motivation

• Skewed outcome functions (e.g., income) and risk quantification. Y(0) | X = x---- Y(1) | X = x



• Need to look beyond the conditional mean effect: Conditional **Distributional** Treatment Effects (**CDTEs**)

CDTEs

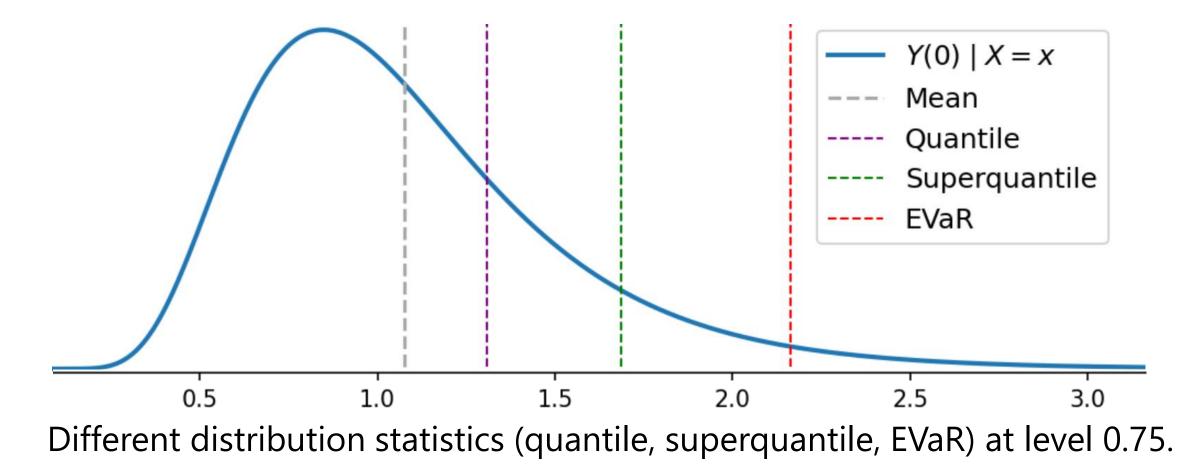
Definition:

$CDTE(X) = \kappa^*(F_{Y(1)|X}) - \kappa^*(F_{Y(0)|X})$

where $\kappa^*(F)$ is any distribution statistic.

Examples of statistics and corresponding CDTEs:

- Mean (CATE)
- Quantiles (CQTE)
- Superquantiles, i.e., tail averages (CSQTE)
- *f*-risk measures from *f*-divergences (C*f*RTE)
- E.g., Entropic-Value-at-Risk (EVaR).



Miruna Oprescu (1st Year Fellow) and Nathan Kallus

TL;DR

We propose an algorithm for learning (conditional) distributional causal effects. Our method is **robust** and **model agnostic** in that we can learn these effects at fast rates, and we can conduct valid inference on coefficients of linear projections.

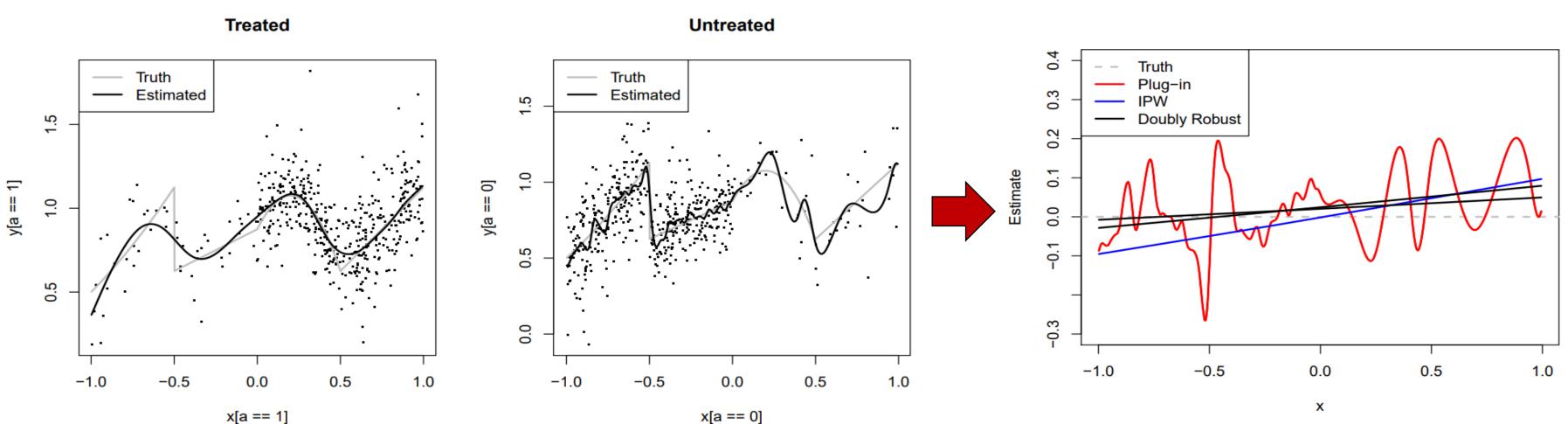
Why Is This a Challenging Problem?

Consider the naïve ("plug-in") estimator:

 $CDTE^{Plugin}(X) = \hat{\kappa}_1(X) - \hat{\kappa}_0(X)$

where $\hat{\kappa}_a(X)$ are estimates for $\kappa_a^*(X)$.

- Inherits bias from the nuisances $\hat{\kappa}_a(X)$ (so-called "plug-in" bias).
- Can wash out the signal when the nuisances are more complex than the CDTE.
- Not robust: difference of linear predictors \neq best linear predictor of difference.



Plugin bias illustration for CATE estimators (from "Towards optimal doubly robust estimation of heterogeneous causal effects", Kennedy, 2020). For means, our method reduces to "Doubly Robust" above.

Debiased CDTE Estimation Algorithm

General Framework: Moment Statistics

 $\mathbb{E}_{F}[\rho(Y,\kappa,h)]$

where $h^*(F)$ is a set of nuisances. Examples:

- Mean: $\rho(y,\mu) = y \mu$
- Quantiles (level τ): $\rho(y,q) = \tau \mathbb{I}[y \le q]$
- Superquantiles (level τ): $\rho(y,\mu,q) = ((1-\tau)^{-1}y\mathbb{I}[y \ge q], \tau \mathbb{I}[y \le q])$

Debiased Regression Estimator

We derive a debiasing term for the plug-in estimator:

$$\psi(Z, e, \alpha, \nu) = \kappa_1(X) - \kappa_0(X) - \frac{A - e(X)}{e(X)(1 - e(X))} \alpha_A(X)^T \rho(Y, \nu_A(X))$$

"plug-in" estimator

where $v_a = (\kappa_a, h_a)$ and the $\alpha_a (X)$'s are additional nuisances to estimate. 2. We regress $\psi(Z, e, \alpha, \nu)$ on features $X \in \mathcal{X}$.

Algorithm 1 CDTE Learner **Input:** Data $\{(X_i, A_i, Y_i) : i \in \overline{1, n}\}$, folds $K \ge 2$, nuisance estimators, regression learner 1: for $k \in 1, K$ do Use data $\{(X_i, A_i, Y_i) : i \neq k-1 \pmod{K}\}$ to construct nuisance estimates $\hat{e}^{(k)}, \hat{\alpha}^{(k)}, \hat{\nu}^{(k)}\}$ for $i = k - 1 \pmod{K}$ do set $\widehat{\psi}_i = \psi(Z_i, \widehat{e}^{(k)}, \widehat{\alpha}^{(k)}, \widehat{\nu}^{(k)})$ end for 4: **end for** 5: return $\widehat{\text{CDTE}}(x) = \widehat{\mathbb{E}}_n[\widehat{\psi} \mid X = x]$

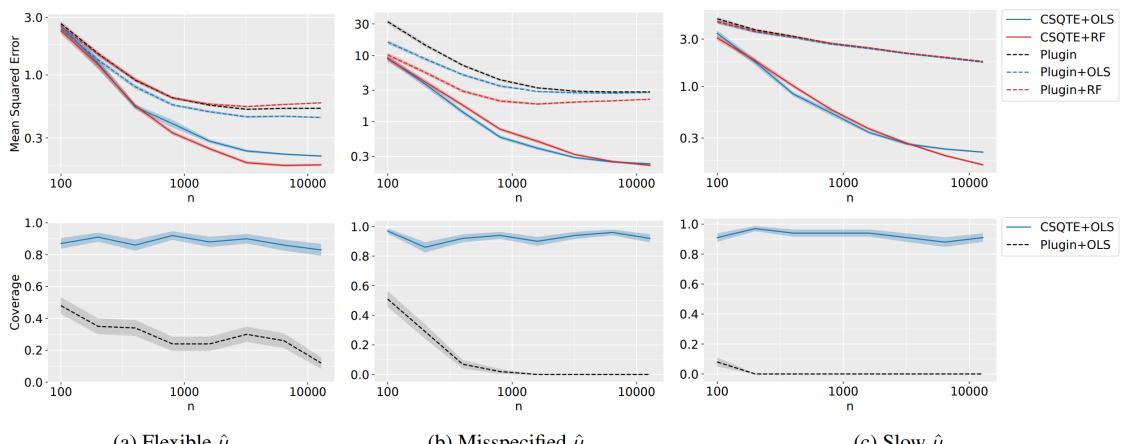
bias correction

Learning and Inference Guarantees

Robustness:

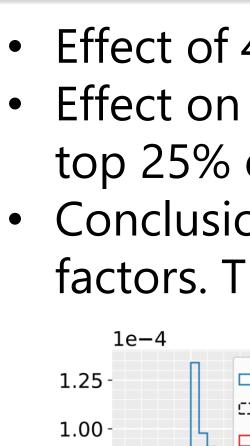
Model Agnostic:

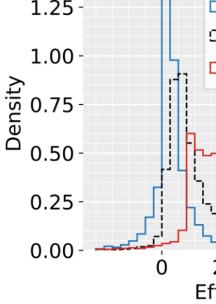
Simulation Study:



Performance of CSQTE learner with a flexible, misspecified or slow converging $\hat{\mu}_a(X)$ estimator. Either a flexible learner (random forest) or OLS is used for the final stage,

Case Study: Effect of 401(k) Eligibility





(Machine Learning jargon)

• Our algorithm's error (RMSE) has a product structure so small errors in the nuisances lead to secondorder errors in the CDTE estimates.

• E.g., if nuisances are estimated at a rate of at least $O(n^{-1/4})$ (nonparametric), CDTEs can be estimated at the rate $O(n^{-1/2})$ (parametric).

• There are many chances at convergence when some of the nuisances are misspecified.

• Linear regression parameters are asymptotically normal with oracle variance.

• E.g., if we use OLS as the final regression, the confidence intervals are valid.

• Tail averages for DGP:

 $A \sim \text{Bernoulli}(\text{logit}(6X_0 - 3))$

 $Y \mid X, A \sim \text{Lognormal}(X_0 + AX_1, 0.2)$

b) Misspecified *i*

• Effect of 401(k) eligibility on net worth. • Effect on the tail averages (CSQTE) of bottom and top 25% of asset holders.

• Conclusion: Tail effects are driven by different factors. The mean does not capture this variation.

CSQTE, bottom 25% CIIJ CATE	Coefficient	CSQTE Bottom 25%	CATE	CSQTE Top 25%
CSQTE, top 25%	Intercept	-0.021	-0.95	-2.07
	(\$10,000)	(-1.06,1.02)	(-2.42,0.51)	(-7.04,2.90)
1	Income	0.25^{**}	0.21	-0.05
		(0.08,0.43)	(-0.08,0.50)	(-1.12, 1.01)
	A mo	105	232^{**}	513
	Age	(-75, 286)	(24, 441)	(-182, 1210)
25000 50000	Education	-801**	16	1340
		(-1440, -164)	(-1050, 1090)	(-2490, 5180)
ffoct				

Left: distribution of CATEs and CSQTEs with random forest last stage. Right: linear regression coefficients with OLS final stage.

⁽c) Slow $\hat{\mu}$