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Treatment Effects

• Binary intervention (“treatment”) 𝐴 ∈ {0, 1}, features 
𝑋 ∈ 𝒳, potential outcomes 𝑌 0 , 𝑌 1 ∈ ℝ under 𝐴.

• We want to describe differences in the outcome 
distributions 𝐹𝑌 1 ∣𝑋 and 𝐹𝑌 0 ∣𝑋.

• Problem #1. For a 𝑋𝑖 , we only observe 𝑌 0  or 𝑌 1 , 

not both. Data is:

𝑍𝑖 = 𝑋𝑖 , 𝐴𝑖 , 𝑌𝑖 ∼ (𝑋, 𝐴, 𝑌(𝐴))

• Problem #2. Correlation ≠ Causation. Selection bias:

 𝑒∗ 𝑋 = ℙ 𝐴 = 1 𝑋

• Problem #3. Literature focuses mainly on averages:

𝔼𝐹 𝑌 1 ∣ 𝑋 = 𝑥 − 𝔼𝐹 𝑌 1 ∣ 𝑋 = 𝑥

TL;DR

We propose an algorithm for learning (conditional) distributional causal effects. Our 

method is robust and model agnostic in that we can learn these effects at fast rates, and 

we can conduct valid inference on coefficients of linear projections. 

Why Is This a Challenging Problem?

Consider the naïve (“plug-in”) estimator: 

𝐶𝐷𝑇𝐸𝑃𝑙𝑢𝑔𝑖𝑛 𝑋 = Ƹ𝜅1 𝑋 − Ƹ𝜅0(𝑋)

where Ƹ𝜅𝑎 𝑋  are estimates for 𝜅𝑎
∗ 𝑋 .

• Inherits bias from the nuisances Ƹ𝜅𝑎 𝑋  (so-called “plug-in” bias).

• Can wash out the signal when the nuisances are more complex than the CDTE.

• Not robust: difference of linear predictors ≠ best linear predictor of difference.

Plugin bias illustration for CATE estimators (from “Towards optimal doubly robust estimation of heterogeneous 

causal effects”, Kennedy, 2020). For means, our method reduces to “Doubly Robust” above.

Learning and Inference Guarantees

        (Machine Learning jargon)     

Robustness: 

• Our algorithm’s error (RMSE) has a product structure 

so small errors in the nuisances lead to second-

order errors in the CDTE estimates.

• E.g., if nuisances are estimated at a rate of at least 

𝑂 𝑛−1/4  (nonparametric), CDTEs can be estimated 

at the rate 𝑂 𝑛−1/2  (parametric).

• There are many chances at convergence when some 

of the nuisances are misspecified.

Model Agnostic: 

• Linear regression parameters are asymptotically 

normal with oracle variance. 

• E.g., if we use OLS as the final regression, the 

confidence intervals are valid.

Simulation Study: 

• Tail averages for DGP:

𝐴 ∼ Bernoulli logit(6𝑋0 − 3)
𝑌 ∣ 𝑋, 𝐴 ∼ Lognormal(𝑋0 + 𝐴𝑋1, 0.2)

Performance of CSQTE learner with a flexible, misspecified or slow 

converging Ƹ𝜇𝑎 𝑋  estimator. Either a flexible learner (random forest) or 

OLS is used for the final stage, 

Case Study: Effect of 401(k) Eligibility

• Effect of 401(k) eligibility on net worth.

• Effect on the tail averages (CSQTE) of bottom and 

top 25% of asset holders.

• Conclusion: Tail effects are driven by different 

factors. The mean does not capture this variation.

Left: distribution of CATEs and CSQTEs with random forest last stage. 

Right: linear regression coefficients with OLS final stage.

This work was published in the International Conference on Artificial Intelligence and Statistics (2023).

Debiased CDTE Estimation Algorithm

General Framework: Moment Statistics

𝔼𝐹 𝜌 𝑌, 𝜅, ℎ = 0

where ℎ∗ 𝐹  is a set of nuisances. Examples:

• Mean: 𝜌 𝑦, 𝜇 = 𝑦 − 𝜇

• Quantiles (level 𝜏): 𝜌 𝑦, 𝑞 = 𝜏 − 𝕀[𝑦 ≤ 𝑞]

• Superquantiles (level 𝜏): 𝜌 𝑦, 𝜇, 𝑞 = ( 1 − 𝜏 −1𝑦𝕀 𝑦 ≥ 𝑞 , 𝜏 − 𝕀[𝑦 ≤ 𝑞])

Debiased Regression Estimator

1. We derive a debiasing term for the plug-in estimator:

𝜓 𝑍, 𝑒, 𝛼, 𝜈 = 𝜅1 𝑋 − 𝜅0 𝑋 −
𝐴 − 𝑒 𝑋

𝑒 𝑋 1 − 𝑒 𝑋
𝛼𝐴 𝑋 𝑇𝜌(𝑌, 𝜈𝐴(𝑋))

  

where 𝜈𝑎 = 𝜅𝑎, ℎ𝑎  and the 𝛼𝑎 𝑋 ‘s are additional nuisances to estimate.

2. We regress 𝜓 𝑍, 𝑒, 𝛼, 𝜈  on features 𝑋 ∈ 𝒳.

“plug-in” estimator bias correction

• Skewed outcome functions (e.g., income) and risk 

quantification.

• Need to look beyond the conditional mean effect:

 Conditional Distributional Treatment Effects (CDTEs)

Beyond Averages: Motivation

Outcomes with the same conditional mean, but different tail effects.

Definition:

 𝐶𝐷𝑇𝐸 𝑋 = 𝜅∗ 𝐹𝑌 1 ∣𝑋 − 𝜅∗(𝐹𝑌 0 ∣𝑋)

where 𝜅∗ 𝐹  is any distribution statistic.

Examples of statistics and corresponding CDTEs:

• Mean (CATE)

• Quantiles (CQTE)

• Superquantiles, i.e., tail averages (CSQTE)

• f-risk measures from f-divergences (CfRTE)

 E.g., Entropic-Value-at-Risk (EVaR).

CDTEs

Different distribution statistics (quantile, superquantile, EVaR) at level 0.75.
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