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Treatment Effects TL;DR Learning and Inference Guarantees
» Binary intervention (“treatment”) A € {0, 1}, features We propose an algorithm for learning (conditional) distributional causal effects. Our (I\/Iachine Learning jargon)

X € X, potential outcomes Y(0),Y (1) € R under A. method is robust and model agnostic in that we can learn these effects at fast rates, and " .
e We want to describe differences in the outcome we can conduct valid inference on coefficients of linear projections. Ro ustness.. ,

distributions F 4 F * Qur algorithm’s error (RMSE) has a product structure

STHDULIONS Fyyix ahd Ty (0)1x- : : 5 so small errors in the nuisances lead to second-

+ Problem #1. For a X;, we only observe ¥ (0) or Y(1), Why Is This a Challenging Problem- et errors i the COTE ectimatec.

not both. Data is: , , , e Eq if nui :

A (" A . .g., If nuisances are estimated at a rate of at least
Z. = (X;, A, Y)) ~ (X, A, Y(A)) Consider the naive (“plug-in”) estimator:

0(n~Y*) (nonparametric), CDTEs can be estimated

Plugin — — 7
CDTE (X) = #1(X) = Ko (X) at the rate 0(n~1/2) (parametric).

 Problem #2. Correlation # Causation. Selection bias:

e*(X)=P(A=11]X) where Ka(}.() are estimates for. a(X). A \ e » There are many chances at convergence when some
» Problem #3. Literature focuses mainly on averages: * Inherits bias from t.qe NUISances Ka(X.) (s0-called “plug-in” bias). of the nuisances are misspecified.
YD 1 X =x] —Eg[Y(1) | X = «] * (Can wash out.the signal wwen the m.Jlsances are more comp.ex than t.he CDTE. Model Agnostic:
. . * Not robust: difference of linear predictors + best linear predictor of difference. + Linear regression parameters are asymptotically
Beyond Averages: Motivation reates onireated N normal with oracle variance.

Truth

—— Plugnin * E.g., If we use OLS as the final regression, the
: confidence intervals are valid.

Simulation Study:
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« Skewed outcome functions (e.g., income) and risk
qguantification.
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— Y(0) [ X=x / o _ * Tail averages for DGP:
— Y(1) | X=X o | ). _ : :
M(e;'l "/ . - e . A ~ Bernoulli(logit(6X, — 3))
-1;;) -{Ls ulu uls. 1lo ) -1|0- —{;5 olo uls 110 | _1|'0 '{;'5 Df” 0f5 1f0 Y | X)A ~ LOgHOTmal(XO + AX1, 02)
x[a == 1] x[a == 0] X
Plugin bias illustration for CATE estimators (from “Towards optimal doubly robust estimation of heterogeneous
1 ' 1 ' ' ! causal effects”, Kennedy, 2020). For means, our method reduces to “Doubly Robust” above.
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Outcomes with the same conditional mean, but different tail effects. . . . .
* Need to look beyond the conditional mean effect: Debiased CDTE Estimation A|90l‘lthm

Conditional Distributional Treatment Effects (CDTEs) General Eramework: Moment Statistics

C DTES “F [p(y’ K, h)] — O Z:z'mo 1000 10000 0:0-1(')0 100010000 00100100010000
where h*(F) is a set of nuisances. Examples: 0 Fexile o Mispeced ©Siow
Definition: * Mean: ,0()’, ,Ll) =Y~ U Performance of CSQTE learner with a flexible, misspecified or slow
— g% ¥ o uantiles (level 1) ’ —1—1v < converging fi,(X) estimator. Either a flexible learner (random forest) or
CDTE(X) = k*(Fyix) = k" (Fyoyx) Q (level 7): p(y,q) y<a O e e &
where k*(F) is any distribution statistic. * Superquantiles (level 7): p(y, 1, q) = (1 — )" ylly = ql,7 — [y < q])
- . Debiased Regression Estimator . 1aitbih
Examples of statistics and corresponding CDTEs: , 9 o , , Case StUdy° EffECt Of 401 (k) Ellglblllty
. M CATE 1. We derive a debiasing term for the plug-in estimator: —
ean ( ) A — e(X) » Effect of 401(k) eligibility on net worth.
* Quantiles (CQTE) Y(Z,e,a,v) = ki (X) — ko (X) O = e(0) a,(X) p(Y,vy(X)) e Effect on the tail averages (CSQTE) of bottom and
: . : e — €
» Superquantiles, i.e., tail averages (CSQTE) \ | o | | top 25% of asset holders.
+ f-risk measures from f-divergences (CfRTE) “plug-in" estimator bias correction » Conclusion: Tail effects are driven by different
E.g., Entropic-Value-at-Risk (EVaR). where v, = (x4, h,) and the a, (X)'s are additional nuisances to estimate. factors. The mean does not capture this variation.
: : : le—4
== 2. Weregress Y(Z,e,a,v) on features X € X. . 1 o — ST
' - c=5 CATE ’ oetlicien Bottom 25% Top 25%
: Mean Algorithm 1 CDTE Learner 100 = Intercont e Y oo
| | oomem Quantile T - _ _ , I 1 ($10,000) (—1.06, 1.02)  (—2.42,0.51)  (—7.04, 2.90)
|- Superquantile Input: Data {(X;, 4;,Y;) : 7 € 1,n}, folds K > 2, nuisance estimators, regression learner § | oo 0.25** 0.21 —0.05
i ..... EVaR 1: for k € 1, K do 0.50- ,"'"i-; N (0.0?,0;).43) (—0.2(;82,*2.50) (—1.1521,31.01)
' 2: Usedata {(X;, A;,Y;) 11 # k —1 (mod K)} to construct nuisance estimates (%), ¢/(%) | (%) . 5‘ Lo ™ N (75 259) (24,040 (7182 1210)
3: fori =k — 1 (mod K) do set y; = 1 (Z;, e(k) q (k) ;j}(’*’?)) end for 000" 0 25000 50000 (—1440, —164)  (—1050, 1090)  (—2490, 5180)
. . ) ? Effect
, , . . . . 4: end for o ,
0.5 1.0 1.5 2.0 2.5 3.0 5. return CDTE(z) = D [?:T“ X = 2] Left: distribution of CATEs and CSQTEs with random forest last stage.
Different distribution statistics (quantile, superquantile, EVaR) at level 0.75. " m | Right: linear regression coefficients with OLS final stage.
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