
Is It Correlation or Causation? 

Uncertainty Quantification in Estimating Causal Effects with Unobserved Confounding

Miruna Oprescu* (2nd Year Fellow)

TL;DR

We propose the B-Learner, a flexible meta-learner that learns bounds on causal effects 

under unobserved confounding. The B-Learner's bounds are valid (correct with high 

probability), sharp (tightest possible), and efficient (requires less data).

Theoretical Guarantees

        (Machine Learning jargon)     

• 𝐋𝟐 validity, sharpness and robustness guarantees for 

ERM second stage estimator ෡𝔼𝑛:

1. L2 bias on the order of 

ℰ = Ƹ𝑒 − 𝑒 𝐿2
ො𝜌 − 𝜌 𝐿2

+ ො𝑞 − 𝑞 𝐿2

2 .

2. If ො𝑞 and either Ƹ𝑒 or ො𝜌 are consistent, the 

bounds are sharp on average.

3. If ො𝑞 is inconsistent, the bounds are still valid in 

expectation.

4. The B-Learner has quasi-oracle efficiency, i.e. 

it learns bounds at a statistical rate influenced 

by the complexity of the target class.

• Pointwise validity, sharpness and robustness 

guarantees for linear smoother second stage 

estimator ෡𝔼𝑛.

* Joint work with J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus, U. Shalit. "B-learner: Quasi-oracle bounds on heterogeneous causal effects under hidden confounding." International Conference on Machine Learning. PMLR, 2023.

• If 𝑈 ≠ ∅, we can’t tell between causation and 

correlation!

• The best we can do: find bounds 𝝉+ 𝒙 , 𝝉− 𝒙  on 𝜏 𝑥 .

Setup: Unobserved Confounding

Introduction: Causal Effects

• Setup: binary treatment 𝐴 ∈ {0, 1}, features 𝑋 ∈ 𝒳, 

potential outcomes 𝑌 0 , 𝑌 1 ∈ ℝ under 𝐴.

• We only observe data 𝑍𝑖 = 𝑋𝑖 , 𝐴𝑖 , 𝑌𝑖 ∼ (𝑋, 𝐴, 𝑌(𝐴)).

• Conditional average treatment effect (CATE):

𝜏 𝑥 = 𝔼 𝑌 1 𝑋 = 𝑥 − 𝔼 𝑌 0 𝑋 = 𝑥

• Example: effect of ibuprofen on headaches.
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Binary treatment 

Observed confounders (features)  

Unobserved confounders 

Observed outcome  

Assumption: Marginal Sensitivity Model (MSM).

Λ−1 ≤ ൘
𝑒(𝑥, 𝑢)

1 − 𝑒(𝑥, 𝑢)

𝑒(𝑥)

1 − 𝑒(𝑥)
≤ Λ

where 𝑒 𝑥 = 𝑃 𝐴 = 1 𝑋 = 𝑥  

             𝑒 𝑥, 𝑢 = 𝑃(𝐴 = 1 ∣ 𝑋 = 𝑥, 𝑈 = 𝑢) 

• Cornfield et al. (1959) found that confounding 

would need to be 9 times larger in smokers than 

non-smokers to negate the observed effect of 

smoking on lung cancer (Λ=9).

Uncertainty Quantification

Example of CATE bounds under different values of Λ.

𝝉± 𝒙  Bounds With The Marginal Sensitivity Model

Let:

     𝜇 𝑥, 𝑎 = 𝔼[𝑌 ∣ 𝑋 = 𝑥, 𝐴 = 𝑎] 

    𝑌± 𝑥, 𝑎 = sup/ inf 𝔼[𝑌(𝑎) ∣ 𝑋 = 𝑥] 

Then:

𝒀+ 𝒙, 𝟏 = 𝑒 𝑥 𝜇 𝑥, 1 + 1 − 𝑒 𝑥 𝜌+ 𝑥, 1

𝒀− 𝒙, 𝟎 = 1 − 𝑒 𝑥 𝜇 𝑥, 0 + 𝑒 𝑥 𝜌− 𝑥, 0

              𝝉+ 𝒙 =  𝒀+ 𝒙, 𝟏  - 𝒀− 𝒙, 𝟎

s.t. 𝜌± 𝑥, 𝑎 = Λ−1𝜇 𝑥, 𝑎 + 1 − Λ−1 𝐶𝑉𝑎𝑅±(𝑥, 𝑎).

 

𝜇(𝑥, 𝑎)

q+ 𝑥, 𝑎 ,
Λ

Λ+1
 quantile

CVaR+(𝑥, 𝑎) 

1

Λ+1
 quantile, q−(𝑥, 𝑎) 

CVaR−(𝑥, 𝑎) 

𝑌 | 𝑋 = 𝑥, 𝐴 = 𝑎

B-Learner: Efficient Estimation of CATE Bounds

Bound estimates should be…

• Valid: correct with high probability.

• Sharp: tightest possible.

• Efficient and Robust: Converge with as little data as

      possible regardless of models used.

Attempt #1: Naïve “Plug-in” Estimator

Estimate 𝑒 x , 𝜇 𝑥, 𝑎 , 𝜌±(𝑥, 𝑎) and “plug” them into 𝑌± 𝑥, 𝑎  to obtain: 

ො𝝉𝐏𝐥𝐮𝐠𝐢𝐧
+ 𝒙 =  ෠𝑌+ 𝑥, 1  - ෠𝑌− 𝑥, 0

• Inherits bias from the estimated nuisances Ƹ𝑒 𝑥 , Ƹ𝜇 𝑥, 𝑎 , ො𝜌± 𝑥, 𝑎  which means that it 

cannot guarantee the desired bound properties.

Attempt #2: The B-Learner Algorithm

1. Estimate nuisance set Ƹ𝜂 = ( Ƹ𝑒 𝑥 , ො𝑞± 𝑥, 𝑎 , ො𝜌± 𝑥, 𝑎 ) in one sample.

2. Derive a debiasing term for the plug-in estimator via the efficient influence function:

𝜙𝜏
+ 𝑍, Ƹ𝜂 = Ƹ𝜏Plugin

+ 𝑋 − 𝑓( Ƹ𝜂 𝑋, 𝐴 )

  

      where 𝑓(⋅) is a known function (that is too complex to write out).

3. Regress pseudo-outcome 𝜙𝜏
+ 𝑍, Ƹ𝜂  on features 𝑋 ∈ 𝒳 in another sample.

“plug-in” bias correction

Experiments

Simulations

𝐴 ∼ Bernoulli logit(0.75𝑋0 + 0.5)

𝑌 ∼ 𝒩( 2𝐴 − 1 𝑋0 + 1 − 2 sin 4𝐴 − 2 𝑋0 , 1)

Quasi-oracle property of the B-Learner algorithm. 𝑛 is the sample size. 

In Ƹ𝜏+(𝑥, 𝑦), 𝑥 and 𝑦 are the types of first- and second-stage nuisances.

Performance of the B-Learner compared with the Sensitivity Kernel 

(Kallus et al. 2019) and Quince (Jesson et al., 2021). GK=Gaussain Kernel, 

NN=Neural Network, RF=Random Forest.


	Slide 3

