Introduction: Causal Effects

Is It Correlation or Causation?

TL;DR

« Setup: binary treatment A € {0, 1}, features X € X,
potential outcomes Y(0),Y (1) € R under A.

 We only observe data Z; = (X;,A4;,Y;) ~ (X,A4,Y(A)).
« Conditional average treatment effect (CATE):
t(x) =E[Y() I X=x]-E[Y(0) | X =x]
« Example: effect of ibuprofen on headaches.
Unit: X Treatment: A Pain Score: Y(¥) Pain Score: Y(2)
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Setup: Unobserved Confounding

We propose the B-Learner, a flexible meta-learner that learns bounds on causal effects
under unobserved confounding. The B-Learner's bounds are valid (correct with high
probability), sharp (tightest possible), and efficient (requires less data).
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Theoretical Guarantees

@ Unobserved confounders

Binary treatment @ \ \
\ @ Observed outcome

@ Observed confounders (features)

If U = @, we can't tell between causation and
correlation!

Uncertainty Quantification

Let: u(x, a)
ulx,a) =E[Y | X =x,A = al
YE(x,a)= sup/infE[Y(a) | X = x]
Then:
Yt(x,1) = e(x)u(x,1) + (1 — e(x))p+(x, 1)
Y~ (x,0) = (1 —e(x))u(x,0) + e(x)p_(x,0)
H(x) =Y (x,1)-Y (x,0)
s.t.py(x,a) = A" u(x,a) + (1 = A™)CVaR . (x, a).

B-Learner: Efficient Estimation of CATE Bounds

(35:) quantile, a_(x,a) 9+ (x, @), (=) quantile
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The best we can do: find bounds 77 (x), T~ (x) on 7(x).

Assumption: Marginal Sensitivity Model (MSM).

_ e(x,u) e(x)
Alsl—e(x,u) 1—e(x)SA
wheree(x) =P(A=1|X=x)

e(x,u)=P(A=11X=x,U =u)

= True T(X) - = log(A) =0.5 log(A) =1.5

- (Confounded T(x) - |log(A)=1.0

Effect

Example of CATE bounds under different values of A.

« Cornfield et al. (1959) found that confounding
would need to be 9 times larger in smokers than
non-smokers to negate the observed effect of
smoking on lung cancer (A=9).

Bound estimates should be...

» Valid: correct with high probability.

* Sharp: tightest possible.

» Efficient and Robust: Converge with as little data as
possible regardless of models used.

— Confounded T(x) === Sharp bounds
Possible T(x)

=== Valid bounds

Effect

Attempt #1: Naive “Plug-in” Estimator
Estimate e(x), u(x, a), p+(x,a) and "plug” them into Y*(x, a) to obtain:

‘i'f;lugin (x) = Y*(x,1)-Y (x,0)

» Inherits bias from the estimated nuisances é(x), fi(x, a), p+(x, a) which means that it
cannot guarantee the desired bound properties.

Attempt #2: The B-Learner Algorithm
1. Estimate nuisance set 1 = (é(x), §+(x, a), p+(x,a)) in one sample.

2. Derive a debiasing term for the plug-in estimator via the efficient influence function:
b7 (Z,1) = Tpygin(X) — f(H(X, A))

bias correction

“plug-in”
where f () Is a known function (that is too complex to write out).

3. Regress pseudo-outcome ¢/ (Z,7) on features X € X in another sample.

Algorithm 1 The B-Learner

input Data {(X;. A,,Y;) i€ {l,....n}}, folds K > 2, nuisance estimators, regression learner E,
I: fork € {1,..., K} do
2:  Usedata {(X;,A4;,Y;) :i #k—1 (mod K)} to construct nuisance estimates n)*) = (elk) g(*) 5(k))
3: fori=Fk—1(mod K) do

4 Setol; = of (Zi,7®)
5: end for
6: end for

output 7+ (z) = E,[oF | X = 2]

& (Machine Learning jargon)

» L, validity, sharpness and robustness guarantees for
ERM second stage estimator E,;:

1. L, bias on the order of

E=lle—ell,llp—pll, + 17 —qlli,
2. If g and either é or p are consistent, the
bounds are sharp on average.
3. If g is inconsistent, the bounds are still valid in

expectation.

4. The B-Learner has quasi-oracle efficiency, i.e.
It learns bounds at a statistical rate influenced
by the complexity of the target class.

* Pointwise validity, sharpness and robustness
guarantees for linear smoother second stage

estimator E,,.

Experiments

Simulations

A ~ Bernoulli(logit(0.75X, + 0.5))
Y ~N((2A—1)(Xo + 1) — 2sin((44 — 2)X,), 1)
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Quasi-oracle property of the B-Learner algorithm. n is the sample size.
In 7 (x, y), x and y are the types of first- and second-stage nuisances.
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Performance of the B-Learner compared with the Sensitivity Kernel
(Kallus et al. 2019) and Quince (Jesson et al., 2021). GK=Gaussain Kernel,
NN=Neural Network, RF=Random Forest.

* Joint work with J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus, U. Shalit. "B-learner: Quasi-oracle bounds on heterogeneous causal effects under hidden confounding." International Conference on Machine Learning. PMLR, 2023.
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