Is It Correlation or Causation? Uncertainty Quantification in Estimating Causal Effects with Unobserved Confounding Miruna Oprescu * (2 nd Year Fellow)

TL;DR

We propose the **B-Learner**, a flexible meta-learner that learns **bounds on causal effects** under unobserved confounding. The B-Learner's bounds are **valid** (correct with high probability), **sharp** (tightest possible), and **efficient** (requires less data).

$\tau^{\pm}(x)$ Bounds With The Marginal Sensitivity Model

-
- bounds are **sharp** on average.
- 3. If \hat{q} is inconsistent, the bounds are still **valid** in expectation.
	-
- 4. The B-Learner has **quasi-oracle efficiency,** i.e. it learns bounds at a statistical rate influenced by the complexity of the target class.
	-
- Pointwise validity, sharpness and robustness guarantees for **linear smoother** second stage
-
- estimator $\widehat{\mathbb{E}}_n$.

Theoretical Guarantees

(Machine Learning jargon)

- \bullet L_2 validity, sharpness and robustness guarantees for **ERM** second stage estimator $\widehat{\mathbb{E}}_n$:
	- 1. L_2 bias on the order of
		- $\mathcal{E} = \|\hat{e} e\|_{L_2} \|\hat{\rho} \rho\|_{L_2} + \|\hat{q} q\|_{L_2}^2.$
	- 2. If \hat{q} and either \hat{e} or $\hat{\rho}$ are consistent, the

 $A \sim \text{Bernoulli}(\text{logit}(0.75X_0 + 0.5))$ $Y \sim \mathcal{N}((2A-1)(X_0+1)-2\sin((4A-2)X_0),1)$

Quasi-oracle property of the B-Learner algorithm. n is the sample size. In $\hat{\tau}^+(x, y)$, x and y are the types of first- and second-stage nuisances.

Setup: Unobserved Confounding

Introduction: Causal Effects

- Setup: binary treatment $A \in \{0, 1\}$, features $X \in \mathcal{X}$, potential outcomes $Y(0)$, $Y(1) \in \mathbb{R}$ under A.
- We only observe data $Z_i = (X_i, A_i, Y_i) \sim (X, A, Y(A)).$
- Conditional average treatment effect (CATE): $\tau(x) = \mathbb{E}[Y(1) | X = x] - \mathbb{E}[Y(0) | X = x]$
- Example: effect of ibuprofen on headaches.

• Inherits bias from the estimated nuisances $\hat{e}(x)$, $\hat{\mu}(x, a)$, $\hat{\rho}_{\pm}(x, a)$ which means that it cannot guarantee the desired bound properties.

- 1. Estimate nuisance set $\hat{\eta} = (\hat{e}(x), \hat{q}_{\pm}(x, a), \hat{\rho}_{\pm}(x, a))$ in one sample.
- 2. Derive a debiasing term for the plug-in estimator via the efficient influence function:

- If $U \neq \emptyset$, we can't tell between causation and correlation!
- The best we can do: find **bounds** $\tau^+(x)$, $\tau^-(x)$ on $\tau(x)$.

Assumption: Marginal Sensitivity Model (MSM).

$$
\Lambda^{-1} \le \frac{e(x, u)}{1 - e(x, u)} / \frac{e(x)}{1 - e(x)} \le \Lambda
$$

where $e(x) = P(A = 1 | X = x)$
 $e(x, u) = P(A = 1 | X = x, U = u)$

• Cornfield et al. (1959) found that confounding would need to be 9 times larger in smokers than non-smokers to negate the observed effect of smoking on lung cancer (Λ=9).

Uncertainty Quantification

Example of CATE bounds under different values of Λ.

Let:

 $\mu(x, a) = \mathbb{E}[Y \mid X = x, A = a]$ $Y^{\pm}(x, a)$ = sup/inf $\mathbb{E}[Y(a) | X = x]$ Then: $Y^+(x, 1) = e(x)\mu(x, 1) + (1 - e(x))\rho_+(x, 1)$ $Y^-(x, 0) = (1 - e(x))\mu(x, 0) + e(x)\rho_-(x, 0)$ $\tau^+(x) = Y^+(x,1) - Y^-(x,0)$

s.t. $\rho_{\pm}(x, a) = \Lambda^{-1} \mu(x, a) + (1 - \Lambda^{-1})CVaR_{\pm}(x, a).$

 $f_{\text{Plugin}}(X) - f(\hat{\eta}(X, A))$

bias correction

B-Learner: Efficient Estimation of CATE Bounds

Bound **estimates** should be…

- **Valid:** correct with high probability.
- **Sharp:** tightest possible.
- **Efficient and Robust:** Converge with as little data as possible regardless of models used.

Attempt #1: Naïve "Plug-in" Estimator

Estimate $e(x)$, $\mu(x, a)$, $\rho_{\pm}(x, a)$ and "plug" them into $Y^{\pm}(x, a)$ to obtain: $\hat{\tau}_{\text{Plugin}}^+(x) = \hat{Y}^+(x,1) - \hat{Y}^-(x,0)$

Attempt #2: The B-Learner Algorithm

$$
\phi_{\tau}^{+}(Z, \hat{\eta}) = \hat{\tau}_{\text{Plugin}}^{+}(X)
$$

where $f(\cdot)$ is a known function (that is too complex to write out).

3. Regress pseudo-outcome $\phi^+_t(Z, \hat{\eta})$ on features $X \in \mathcal{X}$ in another sample.

Algorithm 1 The B-Learner

input Data $\{(X_i, A_i, Y_i) : i \in \{1, ..., n\}\}\$, folds $K \geq 2$, nuisance estimators, regression learner \mathbb{E}_n 1: for $k \in \{1, ..., K\}$ do Use data $\{(X_i, A_i, Y_i) : i \neq k-1 \pmod{K}\}$ to construct nuisance estimates $\hat{\eta}^{(k)} = (\hat{e}^{(k)}, \hat{q}^{(k)}, \hat{\rho}^{(k)})$ for $i = k - 1 \pmod{K}$ do Set $\widehat{\phi}_{\tau,i}^+ = \phi_{\tau}^+(Z_i, \widehat{\eta}^{(k)})$ end for 6: end for **output** $\widehat{\tau}^+(x) = \widehat{\mathbb{E}}_n[\widehat{\phi}^+_{\tau} | X = x]$

Experiments

Simulations

Performance of the B-Learner compared with the *Sensitivity Kernel* (Kallus et al. 2019) and *Quince* (Jesson et al., 2021). GK=Gaussain Kernel, NN=Neural Network, RF=Random Forest.