

Introduction: Causal Effects

- Setup: binary treatment $A \in \{0, 1\}$, features $X \in \mathcal{X}$, potential outcomes $Y(0), Y(1) \in \mathbb{R}$ under A.
- We only observe data $Z_i = (X_i, A_i, Y_i) \sim (X, A, Y(A))$.
- Conditional average treatment effect (CATE): $\tau(x) = \mathbb{E}[Y(1) \mid X = x] - \mathbb{E}[Y(0) \mid X = x]$
- Example: effect of ibuprofen on headaches.

Unit: X	Treatment: A	Pain Score: Y(2)	Pain Score: Y(급)
		6	4
		7	3
		9	7
ĵ.		5	1

Setup: Unobserved Confounding

- If $U \neq \emptyset$, we can't tell between causation and correlation!
- The best we can do: find **bounds** $\tau^+(x)$, $\tau^-(x)$ on $\tau(x)$.

Uncertainty Quantification

Assumption: Marginal Sensitivity Model (MSM).

 $\Lambda^{-1} \le \frac{e(x,u)}{1 - e(x,u)} / \frac{e(x)}{1 - e(x)} \le \Lambda$ where e(x) = P(A = 1 | X = x)e(x, u) = P(A = 1 | X = x, U = u)

Example of CATE bounds under different values of Λ .

• Cornfield et al. (1959) found that confounding would need to be 9 times larger in smokers than non-smokers to negate the observed effect of smoking on lung cancer (Λ =9).

Is It Correlation or Causation? Uncertainty Quantification in Estimating Causal Effects with Unobserved Confounding Miruna Oprescu^{*} (2nd Year Fellow)

TL;DR

We propose the **B-Learner**, a flexible meta-learner that learns **bounds on causal effects** under unobserved confounding. The B-Learner's bounds are **valid** (correct with high probability), **sharp** (tightest possible), and **efficient** (requires less data).

$\tau^{\pm}(x)$ Bounds With The Marginal Sensitivity Model

Let:

 $\mu(x,a) = \mathbb{E}[Y \mid X = x, A = a]$ $Y^{\pm}(x, a) = \sup/\inf \mathbb{E}[Y(a) \mid X = x]$ Then: $Y^{+}(x, 1) = e(x)\mu(x, 1) + (1 - e(x))\rho_{+}(x, 1)$ $Y^{-}(x,0) = (1 - e(x))\mu(x,0) + e(x)\rho_{-}(x,0)$

 $\tau^+(x) = Y^+(x, 1) - Y^-(x, 0)$

s.t. $\rho_{\pm}(x,a) = \Lambda^{-1}\mu(x,a) + (1 - \Lambda^{-1})CVaR_{+}(x,a).$

B-Learner: Efficient Estimation of CATE Bounds

Bound estimates should be...

- Valid: correct with high probability.
- **Sharp:** tightest possible.
- Efficient and Robust: Converge with as little data as possible regardless of models used.

Attempt #1: Naïve "Plug-in" Estimator

Estimate e(x), $\mu(x, a)$, $\rho_+(x, a)$ and "plug" them into $Y^{\pm}(x, a)$ to obtain: $\hat{\tau}^+_{\text{Plugin}}(x) = \hat{Y}^+(x,1) - \hat{Y}^-(x,0)$

Inherits bias from the estimated nuisances $\hat{e}(x)$, $\hat{\mu}(x, a)$, $\hat{\rho}_+(x, a)$ which means that it cannot guarantee the desired bound properties.

Attempt #2: The B-Learner Algorithm

- 1. Estimate nuisance set $\hat{\eta} = (\hat{e}(x), \hat{q}_+(x, a), \hat{\rho}_+(x, a))$ in one sample.
- 2. Derive a debiasing term for the plug-in estimator via the efficient influence function:

$$\phi_{\tau}^{+}(Z,\hat{\eta}) = \hat{\tau}_{\text{Plugin}}^{+}(X)$$

plug-in

where $f(\cdot)$ is a known function (that is too complex to write out).

3. Regress pseudo-outcome $\phi_{\tau}^+(Z,\hat{\eta})$ on features $X \in \mathcal{X}$ in another sample.

Algorithm 1 The B-Learner

input Data { $(X_i, A_i, Y_i) : i \in \{1, ..., n\}$ }, folds $K \ge 2$, nuisance estimators, regression learner \mathbb{E}_n 1: for $k \in \{1, ..., K\}$ do Use data $\{(X_i, A_i, Y_i) : i \neq k - 1 \pmod{K}\}$ to construct nuisance estimates $\widehat{\eta}^{(k)} = (\widehat{e}^{(k)}, \widehat{q}^{(k)}, \widehat{\rho}^{(k)})$ for $i = k - 1 \pmod{K}$ do Set $\widehat{\phi}_{\tau,i}^+ = \phi_{\tau}^+(Z_i, \widehat{\eta}^{(k)})$ end for 6: **end for** output $\widehat{\tau}^+(x) = \widehat{\mathbb{E}}_n[\widehat{\phi}_{\tau}^+ \mid X = x]$

 $-f(\hat{\eta}(X,A))$

bias correction

Theoretical Guarantees

- 2. If \hat{q} and either \hat{e} or $\hat{\rho}$ are consistent, the
- bounds are **sharp** on average.
- 3. If \hat{q} is inconsistent, the bounds are still **valid** in expectation.
- The B-Learner has **quasi-oracle efficiency**, i.e. it learns bounds at a statistical rate influenced by the complexity of the target class.

- **Pointwise** validity, sharpness and robustness guarantees for linear smoother second stage estimator \mathbb{E}_n .

Experiments

Simulations

(Machine Learning jargon)

- L₂ validity, sharpness and robustness guarantees for **ERM** second stage estimator $\widehat{\mathbb{E}}_n$:
 - 1. L_2 bias on the order of
 - $\mathcal{E} = \|\hat{e} e\|_{L_2} \|\hat{\rho} \rho\|_{L_2} + \|\hat{q} q\|_{L_2}^2.$

Quasi-oracle property of the B-Learner algorithm. *n* is the sample size. In $\hat{\tau}^+(x, y)$, x and y are the types of first- and second-stage nuisances.

Performance of the B-Learner compared with the Sensitivity Kernel (Kallus et al. 2019) and Quince (Jesson et al., 2021). GK=Gaussain Kernel, NN=Neural Network, RF=Random Forest.