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Decision-Making in Spatiotemporal Contexts

• Spatiotemporal Data 

• Observations that vary across both spatial and temporal dimensions. E.g.: PM2.5 levels 

during the 2018 California wildfires.

• Often sourced from satellites, ground sensors, and weather stations, capturing how 

conditions evolve day by day and region by region.

• Spatiotemporal Interventions 

• Real‐world actions or policies applied across space and time—such as wildfire prevention 

or pollution control measures—that shape local and regional outcomes (e.g., PM2.5 levels, 

public health).
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• Counterfactual / Policy-Relevant Questions

• “What if stricter wildfire prevention measures had been 

implemented 2 weeks earlier—how would PM2.5 and 

health outcomes change over 𝜏 time steps?”
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Decision-Making in Spatiotemporal Contexts

Causal Inference Question!



• Counterfactual / Policy-Relevant Questions

• “What if stricter wildfire prevention measures had been 

implemented 2 weeks earlier—how would PM2.5 and 

health outcomes change over 𝜏 time steps?”

• Notation

• Time 𝑡 ∈ 1, … , 𝑇 , horizon 𝜏, spatial index 𝑠 ∈ 𝔾.

• Features (Covariates): 𝑋𝑠,1, 𝑋𝑠,2, … , 𝑋𝑠,𝑇. 

• Interventions (Treatments): 𝐴𝑠,1, 𝐴𝑠,2, … , 𝐴𝑠,𝑇 .

• Outcomes: 𝑌𝑠,1, 𝑌𝑠,2, … , 𝑌𝑠,𝑇 .

• History: 𝐻𝑠,1:𝑡 = 𝑋𝑠,1:𝑡 , 𝑌𝑠,1:𝑡 , 𝐴𝑠,1:𝑡−1 .

• Shorthand:

 𝑊𝑠,1:𝑡 = 𝑊𝑠,1, 𝑊𝑠,2, … , 𝑊𝑠,𝑡 , 𝑾1:𝑡 = {𝑊𝑠,1:𝑡: ∀𝑠 ∈ 𝔾}

     for any 𝑊 ∈ 𝑋, 𝐴, 𝑌, 𝐻 .
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Decision-Making in Spatiotemporal Contexts

𝐻𝑠,1:𝑡 𝐻𝑠′,1:𝑡

𝐴𝑠,𝑡 𝐴𝑠′,𝑡

𝑌𝑠,𝑡+1 𝑌𝑠′,𝑡+1

s s’

Schematic of the spatiotemporal data 

(𝑋,𝐴,𝑌,𝐻) across time 𝑡 and location 𝑠.
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Challenges in Spatiotemporal Causal Inference

• Complex Space-Time Dependencies

• Observations at different locations and times can strongly influence one another, 

complicating standard causal analyses.

• Observational vs. Interventional Data

• We need to learn features of an interventional distribution (new policy scenarios) from 

observational data, where interventions were applied differently (or non-randomly).
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Challenges in Spatiotemporal Causal Inference

• Time-Varying Confounders

• A confounder is any variable that affects both treatments and outcomes, and must be 

controlled to avoid biased causal estimates.

• A time-varying confounder is a variable that affects both future treatments and outcomes, 

creating feedback loops (e.g. past interventions shape future covariates, which in turn 

drive subsequent interventions and outcomes).
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Machine Learning for Spatiotemporal Modeling

Approach: Use neural networks to capture spatiotemporal patterns

• U-Net for spatial dependencies [1]

• Encoder-decoder architecture that captures multi-scale spatial features.

• ConvLSTM for temporal dynamics

• Merges convolution and LSTM to model temporal dynamics within a single series.

• Attention to highlight key spatial regions and time steps [2].
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Causal Inference with Time-Varying Confounders

• Estimand: 𝔼 𝒀𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡  

• Average potential outcome after 𝜏 time 

steps under a series of fixed 𝜏 interventions, 

𝒂𝑡:𝑡+𝜏−1, given an observed history 𝑯1:𝑡.

• Iterative G-Computation

• A standard causal inference technique to 

handle time-varying confounders.

• Iteratively averages over potential 

trajectories from the observed history to 

the outcome over horizon 𝜏, ensuring 

unbiased estimates. 

𝔼 𝑌𝑠,𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡

𝐻𝑠,1:𝑡

Potential trajectories
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Causal Inference with Time-Varying Confounders

Iterative G-Computation via Recursive Regression [3]

1. Last Step: 

𝑄𝜏 𝑯1:𝑡+𝜏−1, 𝑨𝑡+ 𝜏−1 = 𝔼 𝒀𝑡+𝜏 𝑯1:𝑡+𝜏−1, 𝑨𝑡+ 𝜏−1 

2. Recursive Steps (for 𝑘 = 𝜏 − 1, … , 1):

𝑄𝑘 𝑯1:𝑡+𝑘−1, 𝑨𝑡+ 𝑘−1 = 𝔼 𝑄𝑘 𝑯1:𝑡+𝑘
𝒂 , 𝑨𝑡+ 𝑘 𝑯1:𝑡+𝜏−1, 𝑨𝑡+ 𝜏−1 

3. Result:

𝔼 𝒀𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡 = 𝑄1(𝑯1:𝑡, 𝒂𝑡)

Here, 𝑯1:𝑡+𝑘
𝒂  denotes the history where treatments from time 𝑡 onward are set to 

the intervention sequence 𝒂𝑡:𝑡+𝑘+1.

 



Miruna Oprescu, Cornell Tech Causal Inference for Spatiotemporal Interventions 10

Introducing the GST-UNet (Our Work)

G-computation Spatio-Temporal UNet (GST-UNet):

• Spatiotemporal Embedding: U-Net + ConvLSTM + attention gates.

• Neural Causal Modules: G-computation heads (e.g. shallow feed-forward networks or 

convolutional layers) for iterative adjustment.

• Key Innovation: Flexible, end-to-end approach that avoids strong modeling assumptions and 

properly accounts for time-varying confounders.

GST-UNet End-to-End Architecture
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Simulation Results on Synthetic Data

• Data: We generate 𝑇 = 200 steps of a 64 × 64 grid of observational data from:

𝑿𝑡 = 𝛼0 + 𝛼1𝑿𝑡−1 + 𝛼2𝑨𝑡−1 + 𝛼3𝐾𝑋 ∗ 𝑿𝑡−1 + 𝜖𝑋

𝑨𝑡 ∼ 𝐵𝑒𝑟𝑛 𝜎 𝛽1 𝛽0 +
1

𝐿
෍

𝑙=0

𝐿−1

𝐾𝐴 ∗ 𝑿𝑡−𝑙  

                                         𝒀𝑡 = 𝛾0 + 𝛾1(𝐾𝑌𝐴 ∗ 𝑨𝑡−1) + 𝛾2
1

𝐿
σ𝑙=1

𝐿 𝐾𝑌𝑋 ∗ 𝑿𝑡−𝑙 + 𝛾3𝒀𝑡−1 + 𝜖𝑌

     Note: “*” is the convolution operation and 𝛽1 controls the time-varying confounding. 

• Results:



• Data (2018 California, county-level data [4]):

• Covariates: wind, temperature, precipitation, 

humidity, shortwave radiation  

• “Treatment”: PM2.5 >10 𝜇𝑔/𝑚3 (unhealthy)

• Outcome: Respiratory hospitalizations.

• Counterfactual/ Policy-Relevant Question:

• How did unhealthy PM2.5 (Camp Fire smoke) affect 

respiratory hospitalization?

• If Camp Fire never occurred (i.e. PM2.5 never exceeded 10 

𝜇𝑔/𝑚3), how would the daily respiratory hospitalizations 

differ during the same time period?
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Case Study: Effect of Wildfire Smoke on Respiratory Illness 
during the 2018 California Camp Fire
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Case Study: Effect of Wildfire Smoke on Respiratory Illness 
during the 2018 California Camp Fire

Results

The GST-UNet estimates that the 

peak period of the Camp Fire 

(November 8–17, 2018) contributed 

to an excess 4,650 (465 per day)1 

respiratory-related hospitalizations 

in the affected counties.

Observed minus predicted daily respiratory admissions at Camp 

Fire peak. Hashed areas mark small‐population counties (<30,000).

1 Note: This result aligns qualitatively with [4], who used a synthetic 

controls method and found about 259 excess daily cases from 

November 8–December 5 (including lower‐intensity days, hence a 

smaller daily estimate).
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Thank You!

Paper: GST-UNet: Spatiotemporal Causal Inference with Time-Varying Confounders. 

Miruna Oprescu, David K. Park, Xihaier Luo, Shinjae Yoo, Nathan Kallus (Under Review, 2025). 

Email: miruna@cs.cornell.edu.

mailto:miruna@cs.cornell.edu
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