

Vasilis Syrgkanis¹

Summary

- We estimate heterogeneous causal effects in the presence of unol confounders with the aid of a valid instrument
- We build robust methods that leverage arbitrary machine learnin account for heterogeneous treatment effects and compliance
- We partnered with TripAdvisor to apply these methods to an A/B intent-to-treat structure
- This work resolves an open question in the literature¹

TripAdvisor's Questions

- What is the *causal effect* of becoming a member on TripAdvisor on downstream activity on the webpage?
- How does that effect vary with observable characteristics of the user?
- Useful for understanding the quality of membership offering, improvements, and targeting

Standard approach: Let's run an A/B test **Problem:** We cannot enforce the treatment

Membership is an action that requires user engagement!

Formal Model

- $T \rightarrow \text{treatment}, e.g. user membership$
- $Y \rightarrow$ outcome, e.g. webpage activity
- $X \rightarrow$ features that capture heterogeneity, e.g. user features
- $Z \rightarrow$ instrumental variable: a variable that affects the treatment T but does not affect the outcome Y other than through the treatment e.g. assignment in A/B test

Structural equations:

$$Y = \theta(X) \cdot T + f_0(X) + e$$
$$T = g_0(X, Z) + \eta$$

where $\mathbb{E}[e \mid X, Z] = 0.$

Limitations of Typical IV Methods

- Cannot estimate a complex $\theta(X)$
- Do not account for compliance heterogeneity
- Do not leverage Machine Learning estimation techniques
- **Example:** Let $\tilde{Y} = Y \mathbb{E}[Y|X], \tilde{T} = T \mathbb{E}[T|X], \tilde{Z} = Z \mathbb{E}[Z|X], \beta_0(X) = \mathbb{E}[\tilde{T}\tilde{Z}|X]$ (2) proposes the following robust estimate of the average treatment effect $\hat{\theta}$:

$$\mathbb{E}[\theta(X)] = \hat{\theta} = \frac{\mathbb{E}[\tilde{Y}\tilde{Z}]}{\mathbb{E}[\tilde{T}\tilde{Z}]}$$
 (ATE)

Since $\hat{\theta} \mathbb{E}[\tilde{T}\tilde{Z}] = \mathbb{E}[\theta(X)\tilde{T}\tilde{Z}]$ in the limit, then:

$$= \frac{\mathbb{E}[\theta(X)\beta_0(X)]}{\mathbb{E}[\theta(X)\beta_0(X)]}$$

$$\mathbb{E}[\beta_0(X)]$$

which is **consistent only if** $\theta(X)$ is constant (no heterogeneity) or $\theta(X)$ and $\beta_0(X)$ are independent (uniform compliance)!

Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments

Victor Lei² Miruna Oprescu¹

¹Microsoft Research, New England (ALI

github.com/microsoft/EconML/tree/master/prototypes/dml_iv

DRIV Algorithm

observed
ng models to
B test with an

(1)(2)

DINIV AIgui
Doubly Robust Instrumental Variable (DRIV) Treat
1. Consider the compliance score ³ :
$\Delta(X) = (2Z - 1) \frac{\mathbb{P}(T = 1 Z = 1,)}{-1}$
Define the following residuals:
$\widetilde{Y} = Y - \mathbb{E}[Y X], \widetilde{T} = T - \mathbb{E}[T]$
2. Estimate preliminary $\widehat{\theta}(X)$:
$\widehat{\theta} = \arg\min_{\theta(\cdot)} \mathbb{E}\left[\left(\widetilde{Y} - \theta\right)\right]$
3. Estimate robust final $\theta(X)$:
$\min_{\theta(\cdot)} \mathbb{E}\left[\left(\widehat{\theta}(X) + \frac{\widetilde{Y} - \widehat{\theta}(X)}{\Delta(X)} \right) \right]$
* More generally, when T and Z are arbitrary and a
$\min_{\theta(\cdot)} \mathbb{E}\left[\left(\widehat{\theta}(X) + \frac{(\widetilde{Y} - \widehat{\theta}(X))}{\widehat{\beta}(X)} \right) \right]$
where $\beta_0(X) = \mathbb{E}[\tilde{T}\tilde{Z} X]$ and $\tilde{Z}/\hat{\beta}(X)$ is known as
Reduction to a Set of Regression/ Classification St

In the above algorithm, the steps marked with \star , \star are classifications and regression tasks, respectively. Benefits of this approach:

- **Statistical and computational benefits** of modern ML approaches (forests, regularized linear models, SVM, DNNs etc.)
- **Cross-validation** for model selection and hyperparameter tuning
- **Interpretability** of estimated models (SHAP, Lime, Influence functions)

Properties of the DRIV method

- Loss function for final estimate satisfies **Neyman orthogonality**⁴
- Mean-Squared-Error of final $\theta(X)$ robust to errors in auxiliary Classifications/ Regressions
- Approach extends beyond recommendation A/B tests, to linear-in-treatment IV setting
- When (6) supports CI construction, Neyman orthogonality typically preserves the validity of the intervals

Maggie Hei ¹	Keith Battocchi ¹	Greg Lev
CE)	² TripAdvisor	

(6)

ment Effect Estimation

$$X) - \mathbb{P}(T = 1 | Z = 0, X)$$

$$X) - \mathbb{P}(T = 1 | Z = 0, X)$$

$$X) \cdot \tilde{Z} = Z - \mathbb{E}[Z | X]$$

$$X) \cdot \Delta(X) ^{2}$$

$$(3)$$

$$(4)$$

$$(5)$$

$$\left(\frac{1}{T} - \theta(X) \right)^2$$

s in (1)-(2),
$$\theta(X)$$
 is given by:
 $\frac{\tilde{T}}{\tilde{Z}} - \theta(X)$

the compliance score³.

PS

Fig. 1: Example of DRIV estimates and confidence intervals for synthetic data with a step treatment effect.

The x and y axes represent the feature of heterogeneity and the treatment effect, respectively.

The shaded region depicts the 95% confidence intervals which attain ~95% coverage in Monte Carlo experiments.

Ran a 4M user A/B test w
• Easier sign-up process
 Outcome was the num
Nuisance Method
LM DMLATEIV
High Lovel Take-Aways
• Largo botorogonoity b
• Large heterogeneity b
• Large neterogeneity b
Results enable better
improvements of men
Fig 2: Random Forest H
Linear Wodel Ke
days_visited_free_pre
revenue pre
 days_visited_hs_pre
days_visited_rs_pre
days_visited_vrs_pre
os_type_osx
locale_en_US
days_visited_fs_pre
-0.6 -0.4 -0. SHAP value (im
 Code: <u>github.com/mic</u>
 Code: <u>github.com/mic</u> # Define the DRIV algorithm
 Code: <u>github.com/mic</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV
 Code: <u>github.com/mid</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV
 Code: <u>github.com/mid</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV
 Code: <u>github.com/mic</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV
 Code: github.com/mid # Define the DRIV algorithm dr_cate = IntentToTreatDRIV # Fit estimator and calculate
 Code: <u>github.com/mid</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV <i># Fit estimator and calculate</i> dr_cate.fit(Y, T, X, Z)
 Code: <u>github.com/mid</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV <i># Fit estimator and calculate</i> dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_t
 Code: <u>github.com/mid</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV <i># Fit estimator and calculate</i> dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_t Fig. 4: Snapshot of the Pythe
 Code: <u>github.com/mid</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV <i># Fit estimator and calculate</i> dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_t Fig. 4: Snapshot of the Pytho EconMI_python library
 Code: <u>github.com/mid</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV <i># Fit estimator and calculate</i> dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_f Fig. 4: Snapshot of the Pytho EconML python library
 Code: github.com/mid # Define the DRIV algorithm dr_cate = IntentToTreatDRIV # Fit estimator and calculate dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_t Fig. 4: Snapshot of the Python EconML python library github.com/micros
 Code: github.com/mid # Define the DRIV algorithm dr_cate = IntentToTreatDRIV # Fit estimator and calculate dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_t Fig. 4: Snapshot of the Python EconML python library github.com/microsy pip install econml
 Code: <u>github.com/mid</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV <i># Fit estimator and calculate</i> dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_t) Fig. 4: Snapshot of the Python EconML python library <u>github.com/micros</u> pip install econmI
 Code: github.com/mid # Define the DRIV algorithm dr_cate = IntentToTreatDRIV # Fit estimator and calculate dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_f Fig. 4: Snapshot of the Pythot EconML python library github.com/micross pip install econml
 Code: github.com/mic # Define the DRIV algorithm dr_cate = IntentToTreatDRIV # Fit estimator and calculate dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_t Fig. 4: Snapshot of the Python EconML python library github.com/micross pip install econml
 Code: <u>github.com/mic</u> <i># Define the DRIV algorithm</i> dr_cate = IntentToTreatDRIV <i># Fit estimator and calculate</i> dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_f Fig. 4: Snapshot of the Python EconML python library <u>github.com/micros</u> <u>pip install econml</u> 1. Nie, X., & Wager, S. <i>Quasi-orac</i> 2. Chernozhukov, V., Chetverikov
 Code: github.com/mic # Define the DRIV algorithm dr_cate = IntentToTreatDRIV # Fit estimator and calculate dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_f Fig. 4: Snapshot of the Python EconML python librar github.com/micros pip install econml
 Code: github.com/mid # Define the DRIV algorithm dr_cate = IntentToTreatDRIV # Fit estimator and calculate dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_t) Fig. 4: Snapshot of the Python EconML python library github.com/microsy pip install econmi
 Code: github.com/mid # Define the DRIV algorithm dr_cate = IntentToTreatDRIV # Fit estimator and calculate dr_cate.fit(Y, T, X, Z) te_pred = dr_cate.effect(X_t Fig. 4: Snapshot of the Python EconML python library github.com/micross github.com/micross pip install econml

wis¹

TripAdvisor's Findings

ith half receiving a new, easier sign-up process. incentivizes membership ber of visits in the next 14 days Table 1: ATE Estimates (Normalized) ATE Est [95% CI] ATE Est [95% CI] Nuisance 0.117 [-0.051, 0.285] 0.127 [-0.031, 0.285] DMLATEIV 0.113 [-0.052, 0.279] GB DRIV 0.125 [-0.061, 0.311] ased on which pages were recently visited ased on platform of access (e.g. iPhone, Linux etc.) targeting of the right user populations and nbership offering for user segments with small effects leterogeneity with Fig 3: Linear Model Heterogeneity with sidualization Linear Model Residualization days_visited_vrs_pre days visited fs pre days_visited_hs_pr os_type_os days_visited_exp_pre days_visited_rs_pr locale en U intercep days_visited_free_pre revenue p os type li

0.2 ct on model output)

Try It Out!

crosoft/EconML/tree/master/prototypes/dml_iv

Coefficient Value

and nuisance functions

'(model_y_x = RandomForestRegressor(), model_t_xz = RandomForestClassifier(),

- prel_model_effect = RandomForestRegressor(),
- final_model_effect = Linear Regression())

treatment effects

est)

on code for applying the DRIV method

y for ML Estimation of Heterogeneous Treatment Effects oft/EconML

Selected References

cle estimation of heterogeneous treatment effects. arXiv preprint, 2017. D., et al. Double/debiased machine learning for treatment and structural Journal, 2018.

trumental variable estimation of treatment response models. Journal of

)., et al. Plug-in regularized estimation of high-dimensional parameters in nonlinear semiparametric models. arXiv preprint, 2018.