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DRIV Algorithm

TripAdvisor's Questions
• What is the causal effect of becoming a member on TripAdvisor on 

downstream activity on the webpage?
• How does that effect vary with observable characteristics of the user?
• Useful for understanding the quality of membership offering, improvements, 

and targeting

Standard approach: Let’s run an A/B test
Problem: We cannot enforce the treatment

Membership is an action that requires user engagement!

Ran a 4M user A/B test with half receiving a new, easier sign-up process.
• Easier sign-up process incentivizes membership
• Outcome was the number of visits in the next 14 days

TripAdvisor's Findings
Doubly Robust Instrumental Variable (DRIV) Treatment Effect Estimation

1. Consider the compliance score3:

Δ 𝑋 = 2𝑍 − 1
ℙ 𝑇 = 1 𝑍 = 1, 𝑋 − ℙ(𝑇 = 1|𝑍 = 0, 𝑋)

2
Define the following residuals:

෨𝑌 = 𝑌 − 𝔼[𝑌|𝑋],   ෨𝑇 = 𝑇 − 𝔼[𝑇|𝑋],   ෨𝑍 = 𝑍 − 𝔼[𝑍|𝑋]

2. Estimate preliminary ෡𝜽(𝑿):

෠𝜃 = argmin
𝜃 ⋅

𝔼 ෨𝑌 − 𝜃 𝑋 ⋅ Δ 𝑋
2

3. Estimate robust final 𝜽(𝑿):

min
𝜃 ⋅

𝔼 ෠𝜃 𝑋 +
෨𝑌 − ෠𝜃 𝑋 ⋅ ෨𝑇

Δ 𝑋
− 𝜃 𝑋

2

* More generally, when 𝑇 and 𝑍 are arbitrary and as in (1)-(2), 𝜃 𝑋 is given by:

min
𝜃 ⋅

𝔼 ෠𝜃 𝑋 +
( ෨𝑌 − ෠𝜃 𝑋 ⋅ ෨𝑇) ෨𝑍

෠β 𝑋
− 𝜃 𝑋

2

where β0 𝑋 = 𝔼 ෨𝑇 ෨𝑍 𝑋 and ෨𝑍/ ෠β 𝑋 is known as the compliance score3.

Reduction to a Set of Regression/ Classification Steps

In the above algorithm, the steps marked with     ,     are classifications and regression tasks, 
respectively. Benefits of this approach:

• Statistical and computational benefits of modern ML approaches (forests, regularized 
linear models, SVM, DNNs etc.)

• Cross-validation for model selection and hyperparameter tuning
• Interpretability of estimated models (SHAP, Lime, Influence functions)

Properties of the DRIV method

• Loss function for final estimate satisfies Neyman orthogonality4

• Mean-Squared-Error of final 𝜃(𝑋) robust to errors in auxiliary Classifications/ 
Regressions

• Approach extends beyond recommendation A/B tests, to linear-in-treatment IV setting
• When (6) supports CI construction, Neyman orthogonality typically preserves the validity 

of the intervals

(3)

(4)

(5)

(6)

Try It Out!

# Define the DRIV algorithm and nuisance functions
dr_cate = IntentToTreatDRIV(model_y_x = RandomForestRegressor(),

model_t_xz = RandomForestClassifier(),
prel_model_effect = RandomForestRegressor(),
final_model_effect = Linear Regression())

# Fit estimator and calculate treatment effects
dr_cate.fit(Y, T, X, Z)
te_pred = dr_cate.effect(X_test)

• Code: github.com/microsoft/EconML/tree/master/prototypes/dml_iv

Fig. 4: Snapshot of the Python code for applying the DRIV method 

• EconML python library for ML Estimation of Heterogeneous Treatment Effects
o github.com/microsoft/EconML
o pip install econml

Fig 2: Random Forest Heterogeneity with
Linear Model Residualization

Summary
• We estimate heterogeneous causal effects in the presence of unobserved 

confounders with the aid of a valid instrument
• We build robust methods that leverage arbitrary machine learning models to 

account for heterogeneous treatment effects and compliance
• We partnered with TripAdvisor to apply these methods to an A/B test with an 

intent-to-treat structure
• This work resolves an open question in the literature1

Formal Model
• 𝑇 → treatment, e.g. user membership
• 𝑌 → outcome, e.g. webpage activity
• 𝑋 → features that capture heterogeneity, e.g. user features
• 𝑍 → instrumental variable: a variable that affects the treatment 𝑇 but does 

not affect the outcome 𝑌 other than through the treatment
e.g. assignment in A/B test

Structural equations:
𝑌 = 𝜃 𝑋 ∙ 𝑇 + 𝑓0 𝑋 + 𝑒

𝑇 = 𝑔0 𝑋, 𝑍 + η

where 𝔼 𝑒 𝑋, 𝑍] = 0.

(1)

(2)

Limitations of Typical IV Methods
• Cannot estimate a complex 𝜃 𝑋
• Do not account for compliance heterogeneity
• Do not leverage Machine Learning estimation techniques
Example: Let ෨𝑌 = 𝑌 − 𝔼[𝑌|𝑋], ෨𝑇 = 𝑇 − 𝔼[𝑇|𝑋], ෨𝑍 = 𝑍 − 𝔼 𝑍 𝑋 , β0 𝑋 = 𝔼 ෨𝑇 ෨𝑍 𝑋

(2) proposes the following robust estimate of the average treatment effect ෠𝜃:

𝔼 𝜃 𝑋 = መ𝜃 =
𝔼[ ෨𝑌 ෨𝑍]

𝔼[ ෨𝑇 ෨𝑍]
(ATE)  

Since መ𝜃𝔼 ෨𝑇 ෨𝑍 = 𝔼[𝜃 𝑋 ෨𝑇 ෨𝑍] in the limit, then:

መ𝜃 =
𝔼[𝜃 𝑋 β0 𝑋 ]

𝔼[β0 𝑋 ]

which is consistent only if 𝜽 𝑿 is constant (no heterogeneity) or 𝜽 𝑿 and 
𝜷𝟎 𝑿 are independent (uniform compliance)!

Fig. 1: Example of DRIV estimates and confidence intervals 
for synthetic data with a step treatment effect. 
The x and y axes represent the feature of heterogeneity 
and the treatment effect, respectively.
The shaded region depicts the 95% confidence intervals
which attain ~95% coverage in Monte Carlo experiments.

Fig 3: Linear Model Heterogeneity with
Linear Model Residualization

Table 1: ATE Estimates (Normalized)

High Level Take-Aways
• Large heterogeneity based on which pages were recently visited
• Large heterogeneity based on platform of access (e.g. iPhone, Linux etc.)
• Results enable better targeting of the right user populations and 

improvements of membership offering for user segments with small effects
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