
EconML: A Machine Learning Library for
Estimating Heterogeneous Treatment Effects

Miruna Oprescu
Microsoft Research

moprescu@microsoft.com

Vasilis Syrgkanis
Microsoft Research

vasy@microsoft.com

Keith Battocchi
Microsoft Research

kebatt@microsoft.com

Maggie Hei
Microsoft Research

maggie.hei@microsoft.com

Greg Lewis
Microsoft Research

glewis@microsoft.com

Abstract

We introduce EconML, a Python library comprised of state-of-the-art techniques
for the estimation of heterogeneous treatment effects from observational data via
machine learning. We highlight the features of EconML, present a common API to
automate complex causal inference problems, and showcase the usage of EconML
to real heterogeneous treatment effect estimation problems.

1 Introduction

One of the biggest promises of machine learning is the automation of decision making in a multitude
of application domains. A core problem that arises in most data-driven personalized decision
scenarios is the estimation of heterogeneous treatment effects: what is the effect of an intervention
on an outcome of interest as a function of a set of observable characteristics of the treated sample?
For instance, this problem arises in personalized pricing, where the goal is to estimate the effect of a
price discount on the demand as a function of characteristics of the consumer. Similarly, it arises
in medical trials where the goal is to estimate the effect of a drug treatment on the clinical response
of a patient as a function of patient characteristics. In many such settings we have an abundance of
observational data, where the treatment was chosen via some unknown policy and the ability to run
control A/B tests is limited.

The EconML package implements recent techniques in the literature at the intersection of econo-
metrics and machine learning that tackle the problem of heterogeneous treatment effect estimation
via machine learning-based approaches. These novel methods offer large flexibility in modeling the
effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while at
the same time leverage techniques from causal inference and econometrics to preserve the causal
interpretation of the learned model and many times also offer statistical validity via the construction
of valid confidence intervals.

EconML implements techniques from recent academic works from leading groups in the field.
Examples include Double Machine Learning (see e.g. [2], [4], [8], [10], [3], [5]), Causal Forests
(see e.g. [13], [1], [11]), Deep Instrumental Variables (see e.g. [6]), Non-parametric Instrumental
Variables ([9], [12]), and meta-learners (see e.g. [7]). The library brings together all these diverse
techniques under a common Python API.

2 Problem Statement

We begin by formulating the abstract problem that is addressed by the library. Subsequently, we will
also provide a formulation in the structural equations notation for readers more familiar with that

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

notation.

The methods developed in our library tackle the following general problem: let Y(t) denote the
random variable that corresponds to the value of the outcome of interest if we were to treat a sample
with treatment t ∈ T . Given two vectors of treatments t0, t1 ∈ T , a vector of covariates x and a
random vector of potential outcomes Y (t), we want to estimate the quantity:

τ(t0, t1,x) = E[Y (t1)− Y (t0)|X = x] (1)

We will refer to the latter quantity as the heterogeneous treatment effect of going from treatment t0
to treatment t1 conditional on observables x. If treatments are continuous, then one might also be
interested in a local effect around a treatment point. The latter translates to estimating a local gradient
around a treatment vector conditional on observables:

∂τ(t,x) = E[∇tY (t)|X = x] (2)

We will refer to the latter as the heterogeneous marginal effect. Finally, we might not only be
interested in the effect but also in the actual counterfactual prediction, i.e. estimating the quatity:

µ(t,x) = E[Y (t)|X = x] (3)

We assume we have data that are generated from some collection policy. In particular, we assume
that we have data of the form: {Yi(Ti), Ti, Xi,Wi, Zi}, where Yi(Ti) is the observed outcome for
the chosen treatment, Ti is the treatment, Xi are the covariates used for heterogeneity, Wi are other
observable covariates that we believe are affecting the potential outcome Yi(Ti) and potentially
also the treatment Ti; and Zi are variables that affect the treatment Ti but do not directly affect the
potential outcome. We will refer to variables Wi as controls and variables Zi as instruments. The
variables Xi can also be thought of as control variables, but they are special in the sense that they are
a subset of the controls with respect to which we want to measure treatment effect heterogeneity. We
will refer to them as features.

Structural Equations

We can equivalently describe the data and the quantities of interest via the means of structural
equations. In particular, suppose that we observe i.i.d. samples {Yi, Ti, Xi,Wi, Zi} from some joint
distribution and we assume the following structural equation model of the world:

Y = g(T,X,W, ε) (4)
T = f(X,W,Z, η) (5)

where ε and η are noise random variables that are independent of X,Z, T,W but could be potentially
correlated with each other. The target quantity that we want to estimate can then be expressed as:

τ(t0, t1,x) = E[g(t1, X,W, ε)− g(t0, X,W, ε)|X = x] (6)
∂τ(t,x) = E[∇tg(t, X,W, ε)|X = x] (7)

where in these expectations, the random variables W, ε are taken from the same distribution as the one
that generated the data. In other words, there is a one-to-one correspondence between the potential
outcomes formulation and the structural equations formulation in that the random variable Y (t)
is equal to the random variable g(t,X,W, ε), where X,W, ε is drawn from the distribution that
generated each sample in the data set.

3 Unified API

The base class of all the methods in our API has the following signature:

2

1 class BaseCateEstimator
2

3 def fit(self, Y, T, X=None, W=None, Z=None, inference=None):
4 ’’’ Estimates the counterfactual model from data, i.e. estimates
5 functions τ(·, ·, ·), ∂τ(·, ·) and µ(·, ·)
6

7 Parameters:
8 Y: (n× dy) matrix of outcomes for each sample
9 T: (n× dt) matrix of treatments for each sample

10 X: optional (n× dx) matrix of features for each sample
11 W: optional (n× dw) matrix of controls for each sample
12 Z: optional (n× dz) matrix of instruments for each sample
13 inference: optional string, ’Inference’ instance, or None
14 Method for performing inference. All estimators support

’bootstrap’ (or an instance of ’BootstrapInference’), some
support other methods as well.

15 ’’’
16

17 def effect(self, X=None, *, T0, T1):
18 ’’’ Calculates the heterogeneous treatment effect τ(·, ·, ·) between two
19 treatment points conditional on a vector of features on a set
20 of m test samples {T0i, T1i, Xi}
21

22 Parameters:
23 T0: (m× dt) matrix of base treatments for each sample
24 T1: (m× dt) matrix of target treatments for each sample
25 X: optional (m× dx) matrix of features for each sample
26

27 Returns:
28 tau: (m× dy) matrix of heterogeneous treatment effects on each
29 outcome for each sample
30 ’’’
31

32 def marginal_effect(self, T, X=None):
33 ’’’ Calculates the heterogeneous marginal effect ∂τ(·, ·) around a base
34 treatment point conditional on a vector of features on a set of m
35 test samples {Ti, Xi}
36

37 Parameters:
38 T: (m× dt) matrix of base treatments for each sample
39 X: optional (m× dx) matrix of features for each sample
40

41 Returns:
42 grad_tau: (m× dy × dt) matrix of heterogeneous marginal effects on
43 each outcome for each sample
44 ’’’
45

46 def effect_interval(self, X=None, *, T0=0, T1=1, alpha=0.1):
47 ’’’ Confidence intervals for the quantities τ(·, ·, ·) produced by the
48 model. Available only when inference is not None, when calling the
49 fit method.
50

51 Parameters:
52 X: optional (m× dx) matrix of features for each sample
53 T0: optional (m× dt) matrix of base treatments for each sample
54 T1: optional (m× dt) matrix of target treatments for each sample
55 alpha: optional float in [0, 1] of the (1-alpha) level of confidence
56

57 Returns:
58 lower, upper : tuple of the lower and the upper bounds of the
59 confidence interval for each quantity.
60 ’’’

Listing 1: Base CATE Estimator Class

3

Through this unified API, the EconML library can be extended with arbitrary heterogeneous treatment
effect estimation methods.

4 Usage Examples: Orange Juice Elasticity

We applied two of the techniques implemented in EconML, namely the Double Machine Learning
technique ([2]) and the Orthogonal Random Forest ([11]), to estimate the effect of orange juice price
on demand.

To this end, we use Dominick’s dataset, a popular historical dataset of store-level orange juice prices
and sales provided by University of Chicago Booth School of Business. The dataset is comprised
of a large number of features W , but economics researchers might only be interested in learning
the elasticity of demand as a function of a few variables x such as income or education. Thus, the
methods in [2] and [11] are ideal candidates for this exercise.

We take the features of heterogeneity x to be the average customer income and the controls W to be
all other features, including orange juice brand information and customer demographics such as the
age, education level, etc. Our results (along with code snippets), depicted in Figs. 1, 2, and 3, unveil
the natural phenomenon that lower income consumers are more price-sensitive.

1 from econml . dml i m p o r t L inearDMLCateEs t imator
2 e s t = LinearDMLCateEs t imator (
3 model_y= RandomFores tRegre s so r () ,
4 mode l_ t = RandomFores tRegre s so r ()
5)
6 e s t . f i t (Y, T , X, W)
7 t e _ p r e d = e s t . e f f e c t (X _ t e s t)

Figure 1: Double Machine Learning (DML) application with linear treatment effect assumption. Left:
code snippet from EconML. Right: DML estimates for the effect of orange juice price on demand by
income level. The shaded region depicts the 1%-99% confidence interval obtained via bootstrap.

1 from econml . dml i m p o r t L inearDMLCateEs t imator
2 e s t = LinearDMLCateEs t imator (
3 model_y= RandomFores tRegre s so r () ,
4 mode l_ t = RandomFores tRegre s so r () ,
5 f e a t u r i z e r = P o l y n o m i a l F e a t u r e s (d e g r e e =4)
6)
7 e s t . f i t (Y, T , X, W)
8 t e _ p r e d = e s t . e f f e c t (X _ t e s t)

Figure 2: DML application with polynomial treatment effect assumption. Left: code snippet from
EconML. Right: DML estimates for the effect of orange juice price on demand by income level. The
shaded region depicts the 1%-99% confidence interval obtained via bootstrap.

5 Conclusion

The EconML library is a versatile tool for estimating heterogeneous treatment effects from observa-
tional data. With a common API for the different estimation methods, state-of-the art techniques can
be continually added to the framework.

We highlight the following features of EconML:

• Built-in inference methods (confidence intervals)
• Built-in cross-validation
• Interpretability tools

4

1 from econml . o r t h o _ f o r e s t i m p o r t C o n t i n u o u s T r e a t m e n t O r t h o F o r e s t
2 e s t = C o n t i n u o u s T r e a t m e n t O r t h o F o r e s t (
3 n _ t r e e s = n _ t r e e s , m i n _ l e a f _ s i z e = m i n _ l e a f _ s i z e ,
4 max_depth=max_depth , s u b s a m p l e _ r a t i o = s u b s a m p l e _ r a t i o ,
5 b o o t s t r a p = b o o t s t r a p ,
6 model_T= Lasso (a l p h a = 0 . 1) ,
7 model_Y= Lasso (a l p h a = 0 . 1)
8)
9 e s t . f i t (Y, T , X, W)

10 t e _ p r e d = e s t . e f f e c t (X _ t e s t)

Figure 3: Orthogonal Random Forest (ORF) application with non-parametric treatment effect. Left:
code snippet from EconML. Right: ORF estimates for the effect of orange juice price on demand by
income level. The shaded region depicts the 1%-99% confidence interval obtained via bootstrap.

• Built on standard Python packages for machine learning and data analysis

• Flexible and reusable for various heterogeneous treatment effect applications

• Open source: Available on GitHub at github.com/microsoft/EconML

We hope that this tool will continue to grow and bring value to causal inference researchers and data
scientists alike.

References
[1] Susan Athey, Julie Tibshirani, Stefan Wager, et al. Generalized random forests. The Annals of

Statistics, 47(2):1148–1178, 2019.

[2] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins. Double/debiased machine learning for treatment and
structural parameters. The Econometrics Journal, 21(1):C1–C68, 2018.

[3] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins. Double/debiased machine learning for treatment and
structural parameters. The Econometrics Journal, 21(1):C1–C68, 2018.

[4] Victor Chernozhukov, Matt Goldman, Vira Semenova, and Matt Taddy. Orthogonal machine
learning for demand estimation: High dimensional causal inference in dynamic panels. arXiv
preprint arXiv:1712.09988, 2017.

[5] Dylan J Foster and Vasilis Syrgkanis. Orthogonal statistical learning. arXiv preprint
arXiv:1901.09036, 2019.

[6] Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep iv: A flexible
approach for counterfactual prediction. In International Conference on Machine Learning,
pages 1414–1423, 2017.

[7] Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Meta-learners for estimating
heterogeneous treatment effects using machine learning. arXiv preprint arXiv:1706.03461,
2017.

[8] Lester Mackey, Vasilis Syrgkanis, and Ilias Zadik. Orthogonal machine learning: Power and
limitations. arXiv preprint arXiv:1711.00342, 2017.

[9] Whitney K. Newey and James L. Powell. Instrumental variable estimation of nonparametric
models. Econometrica, 71(5):1565–1578, 2003.

[10] Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects.
arXiv preprint arXiv:1712.04912, 2017.

[11] Miruna Oprescu, Vasilis Syrgkanis, and Zhiwei Steven Wu. Orthogonal random forest for
heterogeneous treatment effect estimation. arXiv preprint arXiv:1806.03467, 2018.

5

https://github.com/microsoft/EconML

[12] Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, and Greg Lewis.
Machine learning estimation of heterogeneous treatment effects with instruments. arXiv preprint
arXiv:1905.10176, 2019.

[13] Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects
using random forests. Journal of the American Statistical Association, 113(523):1228–1242,
2018.

6

	Introduction
	Problem Statement
	Unified API
	Usage Examples: Orange Juice Elasticity
	Conclusion

