

# **EconML: A Machine Learning Library for Estimating** Heterogeneous Treatment Effects

Vasilis Syrgkanis Keith Battocchi Maggie Hei Miruna Oprescu Greg Lewis

## github.com/Microsoft/EconML



Automated Learning and Intelligence for Causation and Economics

### Why EconML?

- Implements recent techniques that tackle heterogeneous treatment effect estimation from observational data via machine learning-based approaches
- Incorporates techniques form recent academic works (e.g. Double Machine Learning, Causal Forests, Deep Instrumental Variables, Meta-learners<sup>1</sup>, etc.) under a common API
- Empowers researchers/data scientists/decision-makers to perform causal analysis without extensive Economics training
- Open source go-to causal analysis toolkit built on standard machine learning packages that provides built-in cross-validation, inference, interpretability, all in one place

<sup>1</sup>For a complete list of references see <u>econml.azurewebsites.net/spec/references.html</u>

### Usage Examples

**Example with Built-in Cross-Validation** 

- We estimate the effect of orange juice price (T) on demand (Y). The data contains several features W, but we want to learn the elasticity of demand as a function of income alone (X)
- We apply the Double Machine Learning (DML) technique with a polynomial effect

from econml.dml import LinearDMLCateEstimator

*# Parameter sweep for cross-validated random forest* rf\_params = {**'max\_depth'** : [5, 10, 15]} *# Cate estimator* cate\_est = LinearDMLCateEstimator(

> model\_y = GridSearchCV(RandomForestRegressor(), rf\_params), # Built-in cross-validation model\_t = GridSearchCV(RandomForestRegressor(), rf\_params), # Built-in cross-validation featurizer = PolynomialFeatures(degree=3)

### Setup and API Design

• Model:

CATE:

 $\tau(t_0, t_1, x)$ 

• Marginal CATE:

 $\bullet$ 

**Structural Equations Formulation:** 

 $Y = g(T, X, W, \epsilon); T = f(X, W, Z, \eta)$ 

 $\partial \tau(t, x) = E[\nabla_t g(t, X, W, \epsilon) | X = x]$ 

 $= \mathbb{E}[g(t_1, X, W, \epsilon) - g(t_0, X, W, \epsilon) | X = x]$ 

- T treatment policy, Y outcome of intervention
- X features that capture heterogeneity (optional)
- W controls (optional)
- Z instruments (optional)

#### **Potential Outcomes Formulation:**

#### $Y(t) \rightarrow \text{potential outcome}$

- CATE:
  - $\tau(t_0, t_1, x) = \mathbb{E}[Y(t_1) Y(t_0) | X = x]$
- Marginal CATE:
  - $\partial \tau(t, x) = \mathbb{E}[\nabla_t Y(t) | X = x]$
- Counterfactual prediction:  $\mu(t, x) = \mathbb{E}[Y(t)|X = x]$

#### class BaseCateEstimator:

**def fit**(self, Y, T, X=**None**, W=**None**, Z=**None**, inference=**None**): "Estimates the counterfactual model from data, i.e. estimates functions  $\tau(\cdot, \cdot, \cdot)$ ,  $\partial \tau(\cdot, \cdot)$  and  $\mu(\cdot, \cdot)$ inference  $\rightarrow$  Method for performing inference. All estimators support 'bootstrap' some support other methods as well."

#### *# Fit estimator with inference and calculate treatment effects* cate\_est.fit(Y, T, X, W, inference= 'statsmodels' ) te\_pred = cate\_est.effect(X\_test)

#### Inference

The EconML estimators support one or more of the following inference methods:

- Bootstrap (inference='bootstrap')
- OLS (inference='statsmodels')
- Debiased Lasso (inference='debiasedlasso')  $\bullet$
- Subsample Honest Forest (Bootstrap of Little Bags, inference='blb')

### *# Building confidence intervals*

lower, upper = cate\_est.effect\_interval(X\_test, alpha=0.02)



Fig. 2: Linear DML estimates for the effect of orange juice price on demand by income level. The shaded region depicts the 1-99% confidence interval. The results unveil the natural phenomenon that lower income consumers are more price-sensitive.

**def effect**(self, X=**None**, \*, T0, T1):

" Calculates the heterogeneous treatment effect  $\tau(\cdot, \cdot, \cdot)$  between two treatment points conditional on a vector of features X "

#### def marginal\_effect(self, T, X=None):

" Calculates the heterogeneous marginal effect  $\partial \tau(\cdot, \cdot)$  around a base treatment point conditional on a vector of features X "

**def** effect\_interval(self, X=None, \*, T0=0, T1=1, alpha=0.1): "Confidence intervals for the quantities  $\tau(\cdot, \cdot, \cdot)$  produced by the model. `alpha` corresponds to (1 - alpha) level of confidence "

**def** marginal\_effect\_interval(self, T, X=None, \*, alpha=0.1): " Confidence intervals for the quantities  $\partial \tau(\cdot, \cdot)$  produced by the model."

Fig. 1: Snapshot of the common CATE API implemented in Python

### Try it Out!

Python: pip install econml

Did you run a

**EXPERIMENT**?

GitHub: github.com/microsoft/EconML

Do you MEASURE

all the confounding

rivers of TREATMEN

- Documentation: <a>econml.azurewebsites.net</a>
- Jupyter Notebooks: <u>github.com/microsoft/EconML/tree/master/notebooks</u>

Familiarize yourself with the various EconML estimators and their properties!

#### Interpretability

The EconML interpretability toolkit offers:

- Tools for interpreting effects heterogeneity and treatment policies
- Integration with Python visualization libraries such as Graphviz and SHAP

#### from econml.cate\_interpreter import SingleTreeCateInterpreter

intrp = SingleTreeCateInterpreter(include\_model\_uncertainty=**True**, max\_depth=2, min\_samples\_leaf=10) *# We interpret the CATE models behavior on the distribution of heterogeneity features* intrp.interpret(est, X\_test) *# We directly render the tree using the graphviz python library* intrp.render(out\_file='oj\_cate\_tree', format='png', view=True, feature\_names=['log(Income)'])





| Estimator                         | Treatment<br>Type | Instrument?  | Confidence<br>Intervals? | Linear<br>Treatment? | Linear<br>Heterogeneity | Multiple<br>Outcomes? | Multiple<br>Treatments? | High-diml'<br>Features? |
|-----------------------------------|-------------------|--------------|--------------------------|----------------------|-------------------------|-----------------------|-------------------------|-------------------------|
| NonparametricTwoStageLeastSquares | Any               | $\checkmark$ |                          | $\checkmark$         | Assumed                 | $\checkmark$          | $\checkmark$            |                         |
| DeepIVEstimator                   | Any               | $\checkmark$ |                          |                      |                         | $\checkmark$          | $\checkmark$            |                         |
| SparseLinearDMLCateEstimator      | Any               |              | $\checkmark$             | ✓                    | Assumed                 | ✓                     | $\checkmark$            | $\checkmark$            |
| SparseLinearDRLearner             | Categorical       |              | $\checkmark$             |                      | Projected               |                       | $\checkmark$            |                         |
| LinearDMLCateEstimator            | Any               |              | $\checkmark$             | $\checkmark$         | Assumed                 | $\checkmark$          | $\checkmark$            |                         |
| LinearDRLearner                   | Categorical       |              | $\checkmark$             |                      | Projected               |                       | $\checkmark$            |                         |
| ForestDMLCateEstimator            | 1-d/Binary        |              | $\checkmark$             | $\checkmark$         |                         | $\checkmark$          |                         | $\checkmark$            |
| ForestDRLearner                   | Categorical       |              | $\checkmark$             |                      |                         | $\checkmark$          | ✓                       | $\checkmark$            |
| ContinuousTreatmentOrthoForest    | Continuous        |              | $\checkmark$             | $\checkmark$         |                         |                       | $\checkmark$            | $\checkmark$            |
| DiscreteTreatmentOrthoForest      | Categorical       |              | ✓                        |                      |                         |                       | ✓                       | $\checkmark$            |
| metalearners                      | Categorical       |              |                          |                      |                         |                       | ✓                       | $\checkmark$            |
| DRLearner                         | Categorical       |              |                          |                      |                         |                       | ✓                       | ✓                       |
| DMLCateEstimator                  | Any               |              |                          | $\checkmark$         | Assumed                 | ✓                     | ✓                       | ✓                       |

#### Fig. 3: Tree-based interpretation of orange juice elasticity estimates