Microsoft[•] Research

Motivation

Dynamic Pricing Clinical Trials Heterogeneous Treatment Effect Applications

Related Work

- Generalized Random Forest (GRF) 1 a flexible method for estimating θ_0 in the absence of f_0 , g_0 and high-dimensional W.
- Orthogonalization² a technique that removes the confounding effect of W via two-stage estimation for $\theta_0(x) = \theta_0 = const$. only.

Our Contribution

- The Orthogonal Random Forest (ORF), an algorithm that combines generalized random forests and orthogonalization in a non-trivial way to leverage both the flexibility of the random forest framework and the robustness of the double ML technique.
- New consistency results in the partially linear regression model with non standard nuisance functions:

 $E[Y_i|x_i, W_i] = \langle W_i, \theta_0(x_i)\beta_0 + \gamma_0 \rangle,$ where β_0 and γ_0 are k-sparse.

Formal Model

 $\theta(x)$ is the solution to the conditional moment equation: $E[\psi(Z;\theta,h_0(x,W))|X=x] = 0$

 ψ – a score function, h_0 – unknown nuisance function. We wish to estimate $\theta(x)$ non-parametrically, for potentially high-dimensional W.

• We require that ψ is locally orthogonal w.r.t h_0 :

 $E\left[\nabla_{h}\psi(Z;\theta,h_{0}(x,W))(\hat{h}(x,W)-h_{0}(x,W)) \mid x\right] = 0$ We can write down an orthogonal ψ for many applications, including quantile regression, instrumental variable regression, continuous and discrete treatment effects.

For heterogenous treatment effects, take $Z = (T_i, Y_i, W_i, x_i)$ and:

$$Y_{i} = \underbrace{\theta_{0}(x_{i})}_{treatment} T_{i} + \underbrace{f_{0}(x_{i}, W_{i})}_{unknown} + \epsilon_{i}$$

$$T_{i} = \underbrace{g_{0}(x_{i}, W_{i})}_{unknown} + \eta_{i}$$

 T_i – treatment policy, Y_i – outcome of intervention, x_i – features that capture heterogeneity, W_i — high-dimensional confounders.

Orthogonal Random Forest for Causal Inference

Miruna Oprescu

Microsoft Research Cambridge, MA

Vasilis Syrgkanis

Microsoft Research Cambridge, MA

github.com/Microsoft/EconML/tree/master/prototypes/orthogonal_forests

ORF Algorithm

Zhiwei Steven Wu

University of Minnesota Twin Cities, MN

models with missing data. Journal of the American Statistical Association, 1995.

- consumers are more price-sensitive.

literature:

- parametric heterogeneity

Fig. 4 and 5 show the results for continuous treatments and a piecewise linear treatment effect.

Fig. 4: Monte Carlo treatment effect estimations. The shaded regions depict the mean and the 5%-95% interval for the 100 experiments.

Fig. 5: Mean and standard deviation (scaled by a factor of 3 for clarity) of the bias, variance and RMSE as a function of support size k.

Automated Learning and Intelligence for Causation and Economics

ALICE

Real-world Application

We wish to estimate the effect of orange juice price on demand The dataset contains several covariates W, but we want to learn the elasticity of demand as a function of income alone (x).

The ORF results unveil the natural phenomenon that lower income

Fig. 3: ORF estimates of orange juice elasticity by income from a high-dimensional dataset. The shaded region depicts the 1%-99% confidence interval obtained via bootstrap.

Monte Carlo Experiments

We compare the performance of the ORF with other methods in the

GRF on residualized treatments and outcomes

Variants of double ML – an adaptation of double ML that allows for