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Motivation ORF Algorithm Real-world Application

=a R S | ONE PRICEFITE RIS * The following orthogonal moment? y for continuous treatment effects:  We wish to estimate the effect of orange juice price on demand

) W(Z;0,h(x,w)) ={Y — (x,W,q) — (T — (x;W,y)HT = (x,W,y)) » The dataset contains several covariates W, but we want to learn the

elasticity of demand as a function of income alone (x).

* The ORF results unveil the natural phenomenon that lower income
consumers are more price-sensitive.

* For discrete treatments, we can employ a doubly robust3 1.
The ORF algorithm is the following two-step procedure for estimating 6 (x) :

gy ™ T 4 ¢ M, Freeat7:30am |
= —_— . .= ", S ,
: i““mm‘ uuuuuu . “ ’ & : 1 O e St Le a n e
RE e coffee : H car SAEZSHON l [ 3 /A\ ° I l | I

Dynamic Pricing Clinical Trials Targeted Advertlsmg * Partition the dataset D into D; and D, Fig. 3: ORF estimates of orange
Heterogeneous Treatment Effect Applications * Train a forest learner on each partition 2 2 juice elasticity by income from
We build a forest of “orthogonal” trees as follows: g =2 a high-dimensional dataset.
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* @(x) is the solution to the conditional moment equation: 2. Kernel Two-Stage Estimation CRE-Ros.RE CotoroDML ] assq CotoroDMLRE

E[l/)(Z; 0, hy(x, W)) X = x] = We estimate the treatment effect 8(x) using a two-stage procedure:
a) Weighted Lassos T, Y ~x, W; with weights :
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) — a score function, hy — unknown nuisance function. We wish to
estimate 0 (x) non-parametrically, for potentially high-dimensional W'. w; = Kp, (x;,x) =

ul
1

1
# trees

1(x and x; in same leaf)

(O
1

|

|

X

I

o

(9]
Treatment effect

0.55)

Ztrees € Dq leaf size

w
1

2 9 .
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

X X X
\ — Mean estimate - == True effect

* Werequire that ¥ is locally orthogonal w.r.t hj:
E|Va(Z; 0, ho(x, W) (h(x, W) — ho(x,W)) | x| =0

b) Weighted regression on residuals from a):

Kp, (xi, X

6 = argmln pN 1al(0ﬂ — 171)2

o

We can write down an orthogonal ¥ for many applications, including Uo 02 us 05 08 1o Fig. 4: Monte Carlo treatment effect estimations. The shaded regions depict the
guantile regression, instrumental variable regression, continuous and = Kp, (i, %), T; = T = (W, 7 ), Vi = ¥; — (W, G ) Fig. 2: Kern eIXifor = 0.55 mean and the 5%-95% interval for the 100 experiments.
discrete treatment effects. where 7, § are the results from the Lassos in a). for 6, discontinuous at 0.5. . Bias . Variance RMSE
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* For heterogenous treatment effects, take Z = (T}, Y;, W;, x;) and:
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Y; = 0Oo(x;) T; + fo(x;, W;) + € 41 .| 0z
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T; — treatment policy, Y; — outcome of intervention, x; — features that
capture heterogeneity, W; — high-dimensional confounders.

Fig. 5: Mean and standard deviation (scaled by a factor of 3 for clarity) of the bias,
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