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ORF Algorithm

1. Forest Learner
• Partition the dataset D into 𝐷1 and 𝐷2
• Train a forest learner on each partition
We build a forest of “orthogonal” trees as follows:

2. Kernel Two-Stage Estimation

We estimate the treatment effect መ𝜃 𝑥 using a two-stage procedure:
a) Weighted Lassos 𝑇, 𝑌 ~𝑥∥𝑊𝑖 with weights : 
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b) Weighted regression on residuals from a):

𝜃 = argmin
𝜃
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𝑎𝑖 = 𝐾𝐷2(𝑥𝑖 , 𝑥), 
𝑇𝑖 = 𝑇𝑖 − 𝑥∥𝑊𝑖 , ො𝛾 , 𝑌𝑖 = 𝑌𝑖 − 𝑥∥𝑊𝑖 , ො𝑞

where ො𝛾, ො𝑞 are the results from the Lassos in a).

a) Use Double ML2 to 
remove confoundedness:

𝑇𝑖 = 𝑇𝑖 − 𝑥∥𝑊𝑖 , ො𝛾𝑃
𝑌𝑖 = 𝑌𝑖 − 𝑥∥𝑊𝑖 , ො𝑞𝑃

𝜃𝑃 = argmin
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b) Perform the split that 
maximizes the heterogeneity 
score: 

Δ 𝐶1, 𝐶2 = 

𝑗=1
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where መ𝜃𝐶𝑗’s are obtained 

from applying double ML on 
the child nodes.

Fig. 2: Kernel for 𝑥 = 0.55
for 𝜃0 discontinuous at 0.5.
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Fig. 1: Example construction of orthogonal tree 
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We compare the performance of the ORF with other methods in the 
literature: 
• GRF on residualized treatments and outcomes
• Variants of double ML – an adaptation of double ML that allows for 

parametric heterogeneity  
Fig. 4 and 5 show the results for continuous treatments and a piecewise 
linear treatment effect. 

Fig. 5: Mean and standard deviation (scaled by a factor of 3  for clarity) of the bias, 
variance and RMSE as a function of support size 𝑘. 

Fig. 4: Monte Carlo treatment effect estimations. The shaded regions depict the 
mean and the 5%-95% interval for the 100 experiments.  

Related Work

Our Contribution

• The Orthogonal Random Forest (ORF), an algorithm that combines
generalized random forests and orthogonalization in a non-trivial
way to leverage both the flexibility of the random forest framework
and the robustness of the double ML technique.

• New consistency results in the partially linear regression model with
non standard nuisance functions:

𝐸 𝑌𝑖 𝑥𝑖 ,𝑊𝑖 = 𝑊𝑖 , 𝜃0(𝑥𝑖)𝛽0 + 𝛾0 , 𝐸[𝑇𝑖|𝑊𝑖] = 𝑊𝑖 , 𝛾0

where 𝛽0 and 𝛾0 are 𝑘-sparse.

• Generalized Random Forest (GRF) 1 – a flexible method for estimating
𝜃0 in the absence of 𝑓0, 𝑔0 and high-dimensional 𝑊.

• Orthogonalization2 – a technique that removes the confounding
effect of 𝑊 via two-stage estimation for 𝜃0 𝑥 = 𝜃0 = 𝑐𝑜𝑛𝑠𝑡. only.

Real-world Application

Monte Carlo Experiments

Fig. 3: ORF estimates of orange
juice elasticity by income from
a high-dimensional dataset.
The shaded region depicts the
1%-99% confidence interval
obtained via bootstrap.

• We wish to estimate the effect of orange juice price on demand
• The dataset contains several covariates W, but we want to learn the

elasticity of demand as a function of income alone (x).
• The ORF results unveil the natural phenomenon that lower income

consumers are more price-sensitive.
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Formal Model

• 𝜃(𝑥) is the solution to the conditional moment equation:

𝐸 𝜓 ห𝑍; 𝜃, ℎ0 𝑥,𝑊 𝑋 = 𝑥 = 0

𝜓 − a score function, ℎ0 − unknown nuisance function. We wish to
estimate 𝜃(𝑥) non-parametrically, for potentially high-dimensional 𝑊.

• We require that 𝜓 is locally orthogonal w.r.t ℎ0:

𝐸 ∇ℎ𝜓 𝑍; 𝜃, ℎ0(𝑥,𝑊) หℎ(𝑥,𝑊) − ℎ0(𝑥,𝑊) 𝑥 = 0

We can write down an orthogonal 𝜓 for many applications, including
quantile regression, instrumental variable regression, continuous and
discrete treatment effects.
• For heterogenous treatment effects, take 𝑍 = (𝑇𝑖 , 𝑌𝑖 ,𝑊𝑖 , 𝑥𝑖) and:

𝑌𝑖 = 𝜃0(𝑥𝑖)
𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
𝑒𝑓𝑓𝑒𝑐𝑡

𝑇𝑖 + 𝑓0(𝑥𝑖 ,𝑊𝑖)
𝑢𝑛𝑘𝑛𝑜𝑤𝑛

+ 𝜖𝑖

𝑇𝑖 = 𝑔0 𝑥𝑖 ,𝑊𝑖

𝑢𝑛𝑘𝑛𝑜𝑤𝑛

+ 𝜂𝑖

𝑇𝑖 − treatment policy, 𝑌𝑖 − outcome of intervention, 𝑥𝑖 − features that
capture heterogeneity, 𝑊𝑖 − high-dimensional confounders.

• The following orthogonal moment2 𝜓 for continuous treatment effects:

𝜓 𝑍; 𝜃, ℎ 𝑥, 𝑤 = Y − 𝑥∥𝑊,𝑞 − 𝜃 𝑇 − 𝑥∥𝑊, 𝛾 𝑇 − 𝑥∥W, 𝛾

• For discrete treatments, we can employ a doubly robust3 𝜓.
The ORF algorithm is the following two-step procedure for estimating 𝜃(𝑥) :


