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Abstract
Inspired by the demands of real-time climate and
weather forecasting, we develop optimistic on-
line learning algorithms that require no parame-
ter tuning and have optimal regret guarantees un-
der delayed feedback. Our algorithms—DORM,
DORM+, and AdaHedgeD—arise from a novel
reduction of delayed online learning to optimistic
online learning that reveals how optimistic hints
can mitigate the regret penalty caused by delay.
We pair this delay-as-optimism perspective with
a new analysis of optimistic learning that exposes
its robustness to hinting errors and a new meta-
algorithm for learning effective hinting strategies
in the presence of delay. We conclude by bench-
marking our algorithms on four subseasonal cli-
mate forecasting tasks, demonstrating low regret
relative to state-of-the-art forecasting models.

1. Introduction
Online learning is a sequential decision-making paradigm in
which a learner is pitted against a potentially adversarial en-
vironment (Shalev-Shwartz, 2007; Orabona, 2019). At time
t, the learner must select a play wt from some set of possible
plays W. The environment then reveals the loss function `t
and the learner pays the cost `t(wt). The learner uses infor-
mation collected in previous rounds to improve its plays in
subsequent rounds. Optimistic online learners additionally
make use of side-information or “hints” about expected fu-
ture losses to improve their plays. Over a period of length T ,
the goal of the learner is to minimize regret, an objective that
quantifies the performance gap between the learner and the
best possible constant play in retrospect in some competitor
set U: RegretT = supu∈U

∑T
t=1 `t(wt)−`t(u). Adversar-
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ial online learning algorithms provide robust performance in
many complex real-world online prediction problems such
as climate or weather forecasting.

In traditional online learning paradigms, the loss for round
t is revealed to the learner immediately at the end of round
t. However, many real-world applications produce delayed
feedback, i.e., the loss for round t is not available until round
t + D for some delay period D.1 Existing delayed online
learning algorithms achieve optimal worst-case regret rates
against adversarial loss sequences, but each has drawbacks
when deployed for real applications with short horizons
T . Some use only a small fraction of the data to train
each learner (Weinberger & Ordentlich, 2002; Joulani et al.,
2013); others tune their parameters using uniform bounds on
future gradients that are often challenging to obtain or overly
conservative in applications (McMahan & Streeter, 2014;
Quanrud & Khashabi, 2015; Joulani et al., 2016; Korotin
et al., 2020; Hsieh et al., 2020). Only the concurrent work
of Hsieh et al. (2020, Thm. 13) can make use of optimistic
hints and only for the special case of unconstrained online
gradient descent.

In this work, we aim to develop robust and practical algo-
rithms for real-world delayed online learning. To this end,
we introduce three novel algorithms—DORM, DORM+,
and AdaHedgeD—that use every observation to train the
learner, have no parameters to tune, exhibit optimal worst-
case regret rates under delay, and enjoy improved perfor-
mance when accurate hints for unobserved losses are avail-
able. We begin by formulating delayed online learning as
a special case of optimistic online learning and use this
“delay-as-optimism” perspective to develop:

1. A formal reduction of delayed online learning to opti-
mistic online learning (Lems. 1 and 2),

2. The first optimistic tuning-free and self-tuning algo-
rithms with optimal regret guarantees under delay
(DORM, DORM+, and AdaHedgeD),

3. A tightening of standard optimistic online learning
regret bounds that reveals the robustness of optimistic
algorithms to inaccurate hints (Thms. 3 and 4),

1Our initial presentation will assume constant delay D, but we
provide extensions to variable and unbounded delays in App. O.
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4. The first general analysis of follow-the-regularized-
leader (Thms. 5 and 10) and online mirror descent
algorithms (Thm. 6) with optimism and delay, and

5. The first meta-algorithm for learning a low-regret opti-
mism strategy under delay (Thm. 13).

We validate our algorithms on the problem of subseasonal
forecasting in Sec. 7. Subseasonal forecasting—predicting
precipitation and temperature 2-6 weeks in advance—is a
crucial task for allocating water resources and preparing
for weather extremes (White et al., 2017). Subseasonal
forecasting presents several challenges for online learning
algorithms. First, real-time subseasonal forecasting suffers
from delayed feedback: multiple forecasts are issued before
receiving feedback on the first. Second, the regret horizons
are short: a common evaluation period for semimonthly
forecasting is one year, resulting in 26 total forecasts. Third,
forecasters cannot have difficult-to-tune parameters in real-
time, practical deployments. We demonstrate that our al-
gorithms DORM, DORM+, and AdaHedgeD sucessfully
overcome these challenges and achieve consistently low
regret compared to the best forecasting models.

Our Python library for Optimistic Online Learning under
Delay (PoolD) and experiment code are available at
https://github.com/geflaspohler/poold.

Notation For integers a, b, we use the shorthand [b] ,
{1, . . . , b} and ga:b ,

∑b
i=a gi. We say a function f is

proper if it is somewhere finite and never −∞. We let
∂f(w) = {g ∈ Rd : f(u) ≥ f(w) + 〈g,u − w〉, ∀u ∈
Rd} denote the set of subgradients of f at w ∈ Rd and say f
is µ-strongly convex over a convex set W ⊆ int dom f with
respect to ‖·‖ with dual norm ‖·‖∗ if ∀w,u ∈W and g ∈
∂f(w), we have f(u) ≥ f(w)+ 〈g,u−w〉+ µ

2 ‖w−u‖2.
For differentiable ψ, we define the Bregman divergence
Bψ(w,u) , ψ(w)− ψ(u)− 〈∇ψ(u),w − u〉. We define
diam(W) = infw,w′∈W ‖w −w′‖, (r)+ , max(r, 0),
and min(r, s)+ , (min(r, s))+.

2. Preliminaries: Optimistic Online Learning
Standard online learning algorithms, such as follow the reg-
ularized leader (FTRL) and online mirror descent (OMD)
achieve optimal worst-case regret against adversarial loss
sequences (Orabona, 2019). However, many loss sequences
encountered in applications are not truly adversarial. Op-
timistic online learning algorithms aim to improve perfor-
mance when loss sequences are partially predictable, while
remaining robust to adversarial sequences (see, e.g., Azoury
& Warmuth, 2001; Chiang et al., 2012; Rakhlin & Sridha-
ran, 2013b; Steinhardt & Liang, 2014). In optimistic online
learning, the learner is provided with a “hint” in the form
of a pseudo-loss ˜̀

t at the start of round t that represents
a guess for the true unknown loss. The online learner can

incorporate this hint before making play wt.

In standard formulations of optimistic online learning, the
convex pseudo-loss ˜̀

t(wt) is added to the standard FTRL
or OMD regularized objective function and leads to op-
timistic variants of these algorithms: optimistic FTRL
(OFTRL, Rakhlin & Sridharan, 2013a) and single-step opti-
mistic OMD (SOOMD, Joulani et al., 2017, Sec. 7.2). Let
g̃t ∈ ∂ ˜̀

t(wt−1) and gt ∈ ∂`t(wt) denote subgradients of
the pseudo-loss and true loss respectively. The inclusion of
an optimistic hint leads to the following linearized update
rules for play wt+1:

wt+1 = argmin
w∈W

〈g1:t + g̃t+1,w〉+ λψ(w), (OFTRL)

wt+1 = argmin
w∈W

〈gt + g̃t+1 − g̃t,w〉+ Bλψ(w,wt)

with g̃0 = 0 and arbitrary w0 (SOOMD)

where g̃t+1 ∈ Rd is the hint subgradient, λ ≥ 0 is a regular-
ization parameter, and ψ is proper regularization function
that is 1-strongly convex with respect to a norm ‖·‖. The op-
timistic learner enjoys reduced regret whenever the hinting
error ‖gt+1 − g̃t+1‖∗ is small (Rakhlin & Sridharan, 2013a;
Joulani et al., 2017). Common choices of optimistic hints
include the last observed subgradient or average of previ-
ously observed subgradients (Rakhlin & Sridharan, 2013a).
We note that the standard FTRL and OMD updates can be
recovered by setting the optimistic hints to zero.

3. Online Learning with Optimism and Delay
In the delayed feedback setting with constant delay of length
D, the learner only observes (`i)

t−D
i=1 before making play

wt+1. In this setting, we propose counterparts of the OFTRL
and SOOMD online learning algorithms, which we call
optimistic delayed FTRL (ODFTRL) and delayed optimistic
online mirror descent (DOOMD) respectively:

wt+1 = argmin
w∈W

〈g1:t−D + ht+1,w〉+ λψ(w)

(ODFTRL)

wt+1 = argmin
w∈W

〈gt−D + ht+1 − ht,w〉+ Bλψ(w,wt)

with h0 , 0 and arbitrary w0, (DOOMD)

for hint vector ht+1. Our use of the notation ht+1 instead
of g̃t+1 for the optimistic hint here is suggestive. Our regret
analysis in Thms. 5 and 6 reveals that, instead of hinting only
for the “future“ missing loss gt+1, delayed online learners
should uses hints ht that guess at the summed subgradients
of all delayed and future losses: ht =

∑t
s=t−D g̃s.

3.1. Delay as Optimism

To analyze the regret of the ODFTRL and DOOMD algo-
rithms, we make use of the first key insight of this paper:

https://github.com/geflaspohler/poold
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Learning with delay is a special case of learning
with optimism.

In particular, ODFTRL and DOOMD are instances of
OFTRL and SOOMD respectively with a particularly “bad”
choice of optimistic hint g̃t+1 that deletes the unobserved
loss subgradients gt−D+1:t.

Lemma 1 (ODFTRL is OFTRL with a bad hint). ODFTRL
is OFTRL with g̃t+1 = ht+1 −

∑t
s=t−D+1 gs.

Lemma 2 (DOOMD is SOOMD with a bad hint). DOOMD
is SOOMD with g̃t+1 = g̃t + gt−D − gt + ht+1 − ht =
ht+1 −

∑t
s=t−D+1 gs.

The implication of this reduction of delayed online learning
to optimistic online learning is that any regret bound shown
for undelayed OFTRL or SOOMD immediately yields a
regret bound for ODFTRL and DOOMD under delay. As
we demonstrate in the remainder of the paper, this novel
connection between delayed and optimistic online learning
allows us to bound the regret of optimistic, self-tuning, and
tuning-free algorithms for the first time under delay.

Finally, it is worth reflecting on the key property of OFTRL
and SOOMD that enables the delay-to-optimism reduction:
each algorithm depends on gt and g̃t+1 only through the
sum g1:t + g̃t+1.2 For the “bad” hints of Lems. 1 and 2,
these sums are observable even though gt and g̃t+1 are not
separately observable at time t due to delay. A number of
alternatives to SOOMD have been proposed for optimistic
OMD (Chiang et al., 2012; Rakhlin & Sridharan, 2013a;b;
Kamalaruban, 2016). Unlike SOOMD, these procedures all
incorporate optimism in two steps, as in the updates

wt+1/2 = argminw∈W 〈gt,w〉+ Bλψ(w,wt−1/2) and
wt+1 = argminw∈W 〈g̃t+1,w〉+ Bλψ(w,wt+1/2) (1)

described in Rakhlin & Sridharan (2013a, Sec. 2.2). It is
unclear how to reduce delayed OMD to an instance of one of
these two-step procedures, as knowledge of the unobserved
gt is needed to carry out the first step.

3.2. Delayed and Optimistc Regret Bounds

To demonstrate the utility of our delay-as-optimism perspec-
tive, we first present the following new regret bounds for
OFTRL and SOOMD, proved in Apps. B and C respectively.

Theorem 3 (OFTRL regret). If ψ is nonnegative, then, for
all u ∈W, the OFTRL iterates wt satisfy

RegretT (u) ≤ λψ(u) + 1
λ

∑T
t=1 huber(‖gt − g̃t‖∗, ‖gt‖∗).

Theorem 4 (SOOMD regret). If ψ is differentiable and

2For SOOMD, gt + g̃t+1− g̃t = g1:t + g̃t+1−(g1:t−1 + g̃t).

g̃T+1 , 0, then, ∀u ∈W, the SOOMD iterates wt satisfy

RegretT (u) ≤ Bλψ(u,w0) +

1
λ

∑T
t=1 huber(‖gt − g̃t‖∗, ‖gt + g̃t+1 − g̃t‖∗).

Both results feature the robust Huber penalty (Huber, 1964)

huber(x, y) , 1
2x

2 − 1
2 (|x| − |y|)2

+ ≤ min( 1
2x

2, |y||x|)

in place of the more common squared error term
1
2‖gt − g̃t‖2∗. As a result, Thms. 3 and 4 strictly improve the
rate-optimal OFTRL and SOOMD regret bounds of Rakhlin
& Sridharan (2013a); Mohri & Yang (2016); Orabona (2019,
Thm. 7.28) and Joulani et al. (2017, Sec. 7.2) by revealing a
previously undocumented robustness to inaccurate hints g̃t.
We will use this robustness to large hint error ‖gt − g̃t‖∗ to
establish optimal regret bounds under delay.

As an immediate consequence of this regret analysis and our
delay-as-optimism perspective, we obtain the first general
analyses of FTRL and OMD with optimism and delay.

Theorem 5 (ODFTRL regret). If ψ is nonnegative, then,
for all u ∈W, the ODFTRL iterates wt satisfy

RegretT (u) ≤ λψ(u) + 1
λ

∑T
t=1 bt,F for

bt,F , huber(‖ht −
∑t
s=t−D gs‖∗, ‖gt‖∗).

Theorem 6 (DOOMD regret). If ψ is differentiable and
hT+1 , gT−D+1:T , then, for all u ∈ W, the DOOMD
iterates wt satisfy

RegretT (u) ≤ Bλψ(u,w0) + 1
λ

∑T
t=1 bt,O for

bt,O , huber(‖ht −
∑t
s=t−D gs‖∗, ‖gt−D + ht+1 − ht‖∗).

Our results show a compounding of regret due to delay:
the bt,F term of Thm. 5 is of size O(D + 1) whenever
‖ht‖∗ = O(D+ 1), and the same holds for bt,O of Thm. 6
if ‖ht+1 − ht‖∗ = O(1). An optimal setting of λ therefore
delivers O(

√
(D + 1)T ) regret, yielding the minimax opti-

mal rate for adversarial learning under delay (Weinberger
& Ordentlich, 2002). Thms. 5 and 6 also reveal the height-
ened value of optimism in the presence of delay: in addition
to providing an effective guess of the future subgradient
gt, an optimistic hint can approximate the missing delayed
feedback (

∑t−1
s=t−D gs) and thereby significantly reduce the

penalty of delay. If, on the other hand, the hints are a poor
proxy for the missing loss subgradients, the novel huber
term ensures that we still only pay the minimax optimal√
D + 1 penalty for delayed feedback.

Related work A classical approach to delayed feedback
in online learning is the so-called “replication” strategy
in which D + 1 distinct learners take turns observing and
responding to feedback (Weinberger & Ordentlich, 2002;
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Joulani et al., 2013; Agarwal & Duchi, 2011; Mesterharm,
2005). While minimax optimal in adversarial settings, this
strategy has the disadvantage that each learner only sees
T

D+1 losses and is completely isolated from the other repli-
cates, exacerbating the problem of short prediction horizons.
In contrast, we develop and analyze non-replicated delayed
online learning strategies that use a combination of opti-
mistic hinting and self-tuned regularization to mitigate the
effects of delay while retaining optimal worst-case behavior.

We are not aware of prior analyses of DOOMD, and, to our
knowledge, Thm. 5 and its adaptive generalization Thm. 10
provide the first general analysis of delayed FTRL, apart
from the concurrent work of Hsieh et al. (2020, Thm. 1).
Hsieh et al. (2020, Thm. 13) and Quanrud & Khashabi
(2015, Thm. 2.1) focus only on delayed gradient descent,
Korotin et al. (2020) study General Hedging, and Joulani
et al. (2016, Thm. 4) and Quanrud & Khashabi (2015,
Thm. A.5) study non-optimistic OMD under delay. Thms. 5,
6, and 10 strengthen these results from the literature which
feature a sum of subgradient norms (

∑t−1
s=t−D ‖gs‖∗ or

D‖gt‖∗) in place of ‖ht −
∑t−1
s=t−D gs‖∗. Even in the ab-

sence of optimism, the latter can be significantly smaller:
e.g., if the gradients gs are i.i.d. mean-zero vectors, the for-
mer has size Ω(D) while the latter has expectation O(

√
D).

In the absence of optimism, McMahan & Streeter (2014)
obtain a bound comparable to Thm. 5 for the special case of
one-dimensional unconstrained online gradient descent.

In the absence of delay, Cutkosky (2019) introduces meta-
algorithms for imbuing learning procedures with optimism
while remaining robust to inaccurate hints; however, unlike
OFTRL and SOOMD, the procedures of Cutkosky require
separate observation of g̃t+1 and each gt, making them
unsuitable for our delay-to-optimism reduction.

3.3. Tuning Regularizers with Optimism and Delay

The online learning algorithms introduced so far all include
a regularization parameter λ. In theory and in practice,
these algorithms only achieve low regret if the regulariza-
tion parameter λ is chosen appropriately. In standard FTRL,
for example, one such setting that achieves optimal regret

is λ =

√ ∑T
t=1 ‖gt‖2∗

supu∈U ψ(u) . This choice, however, cannot be

used in practice as it relies on knowledge of all future un-
observed loss subgradients. To make use of online learning
algorithms, the tuning parameter λ is often set using coarse
upper bounds on, e.g., the maximum possible subgradient
norm. However, these bounds are often very conservative
and lead to poor real-world performance.

In the following sections, we introduce two strategies for
tuning regularization with optimism and delay. Sec. 4 in-
troduces the DORM and DORM+ algorithms, variants of
ODFTRL and DOOMD that are entirely tuning-free. Sec. 5

introduces the AdaHedgeD algorithm, an adaptive variant
of ODFTRL that is self-tuning; a sequence of regulariza-
tion parameters λt are set automatically using new, tighter
bounds on algorithm regret. All three algorithms achieve the
minimax optimal regret rate under delay, support optimism,
and have strong real-world performance as shown in Sec. 7.

4. Tuning-free Learning with Optimism
and Delay

Regret matching (RM) (Blackwell, 1956; Hart & Mas-
Colell, 2000) and regret matching+ (RM+) (Tammelin et al.,
2015) are online learning algorithms that have strong em-
pirical performance. RM was developed to find correlated
equilibria in two-player games and is commonly used to
minimize regret over the simplex. RM+ is a modification
of RM designed to accelerate convergence and used to ef-
fectively solve the game of Heads-up Limit Texas Hold’em
poker (Bowling et al., 2015). RM and RM+ support neither
optimistic hints nor delayed feedback, and known regret
bounds have a suboptimal scaling with respect to the prob-
lem dimension d (Cesa-Bianchi & Lugosi, 2006; Orabona
& Pál, 2015). To extend these algorithms to the delayed
and optimistic setting and recover the optimal regret rate,
we introduce our generalizations, delayed optimistic regret
matching (DORM)

wt+1 = w̃t+1/〈1, w̃t+1〉 for (DORM)

w̃t+1 , max(0, (r1:t−D + ht+1)/λ)q−1

and delayed optimistic regret matching+ (DORM+)

wt+1 = w̃t+1/〈1, w̃t+1〉 for h0 = w̃0 , 0, (DORM+)

w̃t+1 , max
(
0, w̃p−1

t + (rt−D + ht+1 − ht)/λ
)q−1

,

Each algorithm makes use of an instantaneous regret vector
rt , 1〈gt,wt〉−gt that quantifies the relative performance
of each expert with respect to the play wt and the linearized
loss subgradient gt. The updates also include a parameter
q ≥ 2 and its conjugate exponent p = q/(q − 1) that is
set to recover the minimax optimal scaling of regret with
the number of experts (see Cor. 9). We note that DORM
and DORM+ recover the standard RM and RM+ algorithms
when D = 0, λ = 1, q = 2, and ht = 0, ∀t.

4.1. Tuning-free Regret Bounds

To bound the regret of the DORM and DORM+ plays, we
prove that DORM is an instance of ODFTRL and DORM+
is an instance of DOOMD. This connection enables us
to immediately provide regret guarantees for these regret-
matching algorithms under delayed feedback and with opti-
mism. We first highlight a remarkable property of DORM
and DORM+ that is the basis of their tuning-free nature.
Under mild conditions:
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The normalized DORM and DORM+ iterates wt

are independent of the choice of regularization
parameter λ.

Lemma 7 (DORM and DORM+ are independent of λ). If
the subgradient gt and hint ht+1 only depend on λ through
(ws, λ

q−1w̃s,gs−1,hs)s≤t and (ws, λ
q−1w̃s,gs,hs)s≤t

respectively, then the DORM and DORM+ iterates (wt)t≥1

are independent of the choice of λ > 0.

Lem. 7, proved in App. E, implies that DORM and DORM+
are automatically optimally tuned with respect to λ, even
when run with a default value of λ = 1. Hence, these
algorithms are tuning-free, a very appealing property for
real-world deployments of online learning.

To show that DORM and DORM+ also achieve optimal
regret scaling under delay, we connect them to ODFTRL
and DOOMD operating on the nonnegative orthant with a
special surrogate loss ˆ̀

t (see App. D for our proof):

Lemma 8 (DORM is ODFTRL and DORM+ is DOOMD).
The DORM and DORM+ iterates are proportional to
ODFTRL and DOOMD iterates respectively with W , Rd+,
ψ(w̃) = 1

2‖w̃‖2p, and loss ˆ̀
t(w̃) = 〈w̃,−rt〉.

Lem. 8 enables the following optimally-tuned regret bounds
for DORM and DORM+ run with any choice of λ:

Corollary 9 (DORM and DORM+ regret). Under the as-
sumptions of Lem. 7, for all u ∈ 4d−1 and any choice of
λ > 0, the DORM and DORM+ iterates wt satisfy

RegretT (u) ≤ inf
λ>0

λ
2 ‖u‖2p + 1

λ(p−1)

∑T
t=1 bt,q

=
√
‖u‖2p

2(p−1)

∑T
t=1 bt,q ≤

√
d2/q(q−1)

2

∑T
t=1 bt,∞

where hT+1 , rT−D+1:T and, for each c ∈ [2,∞],

bt,c
(DORM)

= huber(‖ht −
∑t
s=t−D rs‖c, ‖rt‖c) and

bt,c
(DORM+)

= huber(‖ht −
∑t
s=t−D rs‖2c ,

‖rt−D + ht+1 − ht‖c).

If, in addition, q = argminq′≥2 d
2/q′(q′ − 1), then

RegretT (u) ≤
√

(2 log2(d)− 1)
∑T
t=1 bt,∞.

Cor. 9, proved in App. F, suggests a natural hinting strategy
for reducing the regret of DORM and DORM+: predict the
sum of unobserved instantaneous regrets

∑t
s=t−D rs. We

explore this strategy empirically in Sec. 7. Cor. 9 also high-
lights the value of the q parameter in DORM and DORM+:
using the easily computed value q = argminq′≥2 d

2/q′(q′−
1) yields the minimax optimal

√
log2(d) dependence of re-

gret on dimension (Cesa-Bianchi & Lugosi, 2006; Orabona
& Pál, 2015). By Lem. 8, setting q in this way is equivalent

to selecting a robust 1
2‖·‖2p regularizer (Gentile, 2003) for

the underlying ODFTRL and DOOMD problems.

Related work Without delay, Farina et al. (2021) inde-
pendently developed optimistic versions of RM and RM+
by reducing them to OFTRL and a two-step variant of opti-
mistic OMD (1). Unlike SOOMD, this two-step optimistic
OMD requires separate observation of g̃t+1 and gt, mak-
ing it unsuitable for our delay-as-optimism reduction and
resulting in a different algorithm from DORM+ even when
D = 0. In addition, their regret bounds and prior bounds
for RM and RM+ (special cases of DORM and DORM+
with q = 2) have suboptimal regret when the dimension d
is large (Bowling et al., 2015; Zinkevich et al., 2007).

5. Self-tuned Learning with Optimism
and Delay

In this section, we analyze an adaptive version of ODFTRL
with time-varying regularization λtψ and develop strategies
for setting λt appropriately in the presence of optimism
and delay. We begin with a new general regret analysis of
optimistic delayed adaptive FTRL (ODAFTRL)

wt+1 = argmin
w∈W

〈g1:t−D + ht+1,w〉+ λt+1ψ(w)

(ODAFTRL)

where ht+1 ∈ Rd is an arbitrary hint vector revealed before
wt+1 is generated, ψ is 1-strongly convex with respect to a
norm ‖·‖, and λt ≥ 0 is a regularization parameter.
Theorem 10 (ODAFTRL regret). If ψ is nonnegative and
λt is non-decreasing in t, then, ∀u ∈W, the ODAFTRL
iterates wt satisfy

RegretT (u) ≤ λTψ(u) +
∑T
t=1 min(

bt,F
λt

,at,F ) with

bt,F , huber(‖ht −
∑t
s=t−D gs‖∗, ‖gt‖∗) and (2)

at,F , diam(W) min
(
‖ht −

∑t
s=t−D gs‖∗, ‖gt‖∗

)
.

The proof of this result in App. G builds on a new regret
bound for undelayed optimistic adaptive FTRL (OAFTRL).
In the absence of delay (D = 0), Thm. 10 strictly im-
proves existing regret bounds (Rakhlin & Sridharan, 2013a;
Mohri & Yang, 2016; Joulani et al., 2017) for OAFTRL
by providing tighter guarantees whenever the hinting error
‖ht −

∑t
s=t−D gt‖∗ is larger than the subgradient magni-

tude ‖gt‖∗. In the presence of delay, Thm. 10 benefits
both from robustness to hinting error in the worst case
and the ability to exploit accurate hints in the best case.
The bounded-domain factors at,F strengthen both standard
OAFTRL regret bounds and the concurrent bound of Hsieh
et al. (2020, Thm. 1) when diam(W) is small and will en-
able us to design practical λt-tuning strategies under delay
without any prior knowledge of unobserved subgradients.
We now turn to these self-tuning protocols.
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5.1. Conservative Tuning with Delayed Upper Bound

Setting aside the at,F bounded-domain factors in Thm. 10

for now, the adaptive sequence λt =
√ ∑t

s=1 bs,F
supu∈U ψ(u) is

known to be a near-optimal minimizer of the ODAFTRL
regret bound (McMahan, 2017, Lemma 1). However, this
value is unobservable at time t. A common strategy is to

play the conservative value λt =

√
(D+1)B0+

∑t−D−1
s=1 bs,F

supu∈U ψ(u) ,

where B0 is a uniform upper bound on the unobserved bs,F
terms (Joulani et al., 2016; McMahan & Streeter, 2014). In
practice, this requires computing an a priori upper bound
on any subgradient norm that could possibly arise and often
leads to extreme over-regularization (see Sec. 7).

As a preliminary step towards fully adaptive settings of λt,
we analyze in App. H a new delayed upper bound (DUB)
tuning strategy which relies only on observed bs,F terms
and does not require upper bounds for future losses.

Theorem 11 (DUB regret). Fix α > 0, and, for at,F ,bt,F
as in (2), consider the delayed upper bound (DUB) sequence

λt+1 = 2
α maxj≤t−D−1 aj−D+1:j,F (DUB)

+ 1
α

√∑t−D
i=1 a2

i,F + 2αbi,F .

If ψ is nonnegative, then, for all u ∈ W, the ODAFTRL
iterates wt satisfy

RegretT (u) ≤
(ψ(u)

α + 1
)

(
2 maxt∈[T ] at−D:t−1,F +

√∑T
t=1 a

2
t,F + 2αbt,F

)
.

As desired, the DUB setting of λt depends only on previ-
ously observed at,F and bt,F terms and achieves optimal
regret scaling with the delay period D. However, the terms
at,F , bt,F are themselves potentially loose upper bounds for
the instantaneous regret at time t. In the following section,
we show how the DUB regularization setting can be refined
further to produce AdaHedgeD adaptive regularization.

5.2. Refined Tuning with AdaHedgeD

As noted by Erven et al. (2011); de Rooij et al. (2014);
Orabona (2019), the effectiveness of an adaptive regular-
ization setting λt that uses an upper bound on regret (such
as bt,F ) relies heavily on the tightness of that bound. In
practice, we want to set λt using as tight a bound as possi-
ble. Our next result introduces a new tuning sequence that
can be used with delayed feedback and is inspired by the
popular AdaHedge algorithm (Erven et al., 2011). It makes
use of the tightened regret analysis underlying Thm. 10 to
enable tighter settings of λt compared to DUB, while still
controlling algorithm regret (see proof in App. I).

Theorem 12 (AdaHedgeD regret). Fix α > 0, and consider

the delayed AdaHedge-style (AdaHedgeD) sequence

λt+1 = 1
α

∑t−D
s=1 δs for (AdaHedgeD)

δt , min(Ft+1(wt, λt)− Ft+1(w̄t, λt), 〈gt,wt − w̄t〉,
Ft+1(ŵt, λt)− Ft+1(w̄t, λt) + 〈gt,wt − ŵt〉)+

with w̄t , argminw∈W Ft+1(w, λt), (3)

ŵt , argminw∈W Ft+1(w, λt) +

min( ‖gt‖∗
‖ht−gt−D:t‖∗ , 1)〈ht − gt−D:t,w〉,

and Ft+1(w, λt) , λtψ(w) + 〈g1:t,w〉.
If ψ is nonnegative, then, for all u ∈ W, the ODAFTRL
iterates satisfy

RegretT (u) ≤
(ψ(u)

α + 1
)

(
2 maxt∈[T ] at−D:t−1,F +

√∑T
t=1 a

2
t,F + 2αbt,F

)
.

Remarkably, Thm. 12 yields a minimax optimal
O(
√

(D + 1)T + D) dependence on the delay parameter
and nearly matches the Thm. 5 regret of the optimal constant
λ tuning. Although this regret bound is identical to that in
Thm. 11, in practice the λt values produced by AdaHedgeD
can be orders of magnitude smaller than those of DUB,
granting additional adaptivity. We evaluate the practical
implications of these λt settings in Sec. 7.

As a final note, when ψ is bounded on U, we recommend
choosing α = supu∈U ψ(u) so that ψ(u)

α ≤ 1. For negative
entropy regularization ψ(u) =

∑d
j=1 uj ln(uj) + ln(d) on

the simplex U = W = 4d−1, this yields α = ln(d) and a
regret bound with minimax optimal

√
ln(d) dependence on

d (Cesa-Bianchi & Lugosi, 2006; Orabona & Pál, 2015).

Related work Our AdaHedgeD δt terms differ from
standard AdaHedge increments (see, e.g., Orabona, 2019,
Sec. 7.6) due to the accommodation of delay, the incorpora-
tion of optimism, and the inclusion of the final two terms in
the min. These non-standard terms are central to reducing
the impact of delay on our regret bounds. Prior and con-
current approaches to adaptive tuning under delay do not
incorporate optimism and require an explicit upper bound
on all future subgradient norms, a quantity which is often
difficult to obtain or very loose (McMahan & Streeter, 2014;
Joulani et al., 2016; Hsieh et al., 2020). Our optimistic al-
gorithms, DUB and AdaHedgeD, admit comparable regret
guarantees (Thms. 11 and 12) but require no prior knowl-
edge of future subgradients.

6. Learning to Hint with Delay
As we have seen, optimistic hints play an important role in
online learning under delay: effective hinting can counteract
the increase in regret under delay. In this section, we con-
sider the problem of choosing amongst several competing
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hinting strategies. We show that this problem can again be
treated as a delayed online learning problem. In the fol-
lowing, we will call the original online learning problem
the “base problem” and the learning-to-hint problem the
“hinting problem.”

Suppose that, at time t, we observe the hints g̃t of m differ-
ent hinters arranged into a d×m matrix Ht. Each column
of Ht is one hinter’s best estimate of the sum of missing
loss subgradients gt−D:t. Our aim is to output a sequence
of combined hints ht(ωt) , Htωt with low regret relative
to the best constant combination strategy ω ∈ Ω , 4m−1

in hindsight. To achieve this using delayed online learning,
we make use of a convex loss function lt(ω) for the hint
learner that upper bounds the base learner regret.
Assumption 1 (Convex regret bound). For any hint se-
quence (ht)

T
t=1 and u ∈ Ω, the base problem admits the

regret bound RegretT (u) ≤ C0(u)+C1(u)
√∑T

t=1 ft(ht)

for C1(u) ≥ 0 and convex functions ft independent of u.

As we detail in App. K, Assump. 1 holds for all of the
learning algorithms introduced in this paper. For example,
by Cor. 9, if the base learner is DORM, we may choose

C0(u) = 0, C1(u) =
√
‖u‖2p

2(p−1) , and the O(D + 1) convex

function ft(ht) = ‖rt‖q‖ht −
∑t
s=t−D rs‖q ≥ bt,q .3

For any base learner satisfying Assump. 1, we choose
lt(ω) = ft(Htω) as our hinting loss, use the tuning-free
DORM+ algorithm to output the combination weights ωt
on each round, and provide the hint ht(ωt) = Htωt to the
base learner. The following result, proved in App. J, shows
that this learning to hint strategy performs nearly as well as
the best constant hint combination strategy in restrospect.
Theorem 13 (Learning to hint regret). Suppose the base
problem satisfies Assump. 1 and the hinting problem is
solved with DORM+ hint iterates ωt, hinting losses lt(ω) =
ft(Htω), no meta-hints for the hinting problem, and q =
argminq′≥2m

2/q′(q′ − 1). Then the base problem with
hints ht(ωt) = Htωt satisfies

RegretT (u) ≤ C0(u) + C1(u)
√

infω∈Ω

∑T
t=1 ft(ht(ω))

+ C1(u)
(
(2 log2(m)− 1)( 1

2ξT +
∑T−1
t=1 huber(ξt, ζt))

)1/4
for ξt , 4(D + 1)

∑t
s=t−D ‖γs‖2∞, γt ∈ ∂lt(ωt),

and ζt , 4‖γt−D‖∞
∑t
s=t−D ‖γs‖∞.

To quantify the size of this regret bound, con-
sider again the DORM base learner with ft(ht) =
‖rt‖q‖ht −

∑t
s=t−D rs‖q. By Lem. 26 in App. K,

‖γt‖∞ ≤ d1/q‖Ht‖∞‖rt‖q for ‖Ht‖∞ the maximum ab-
solute entry of Ht. Each column of Ht is a sum D + 1

3The alternative choice ft(ht) = 1
2
‖ht −

∑t
s=t−D rs‖2q also

bounds regret but may have size Θ((D + 1)2).

subgradient hints, so ‖Ht‖∞ is O(D + 1). Thus, for this
choice of hinter loss, the huber(ξt, ζt) term isO((D+ 1)3),
and the hint learner suffers only O(T 1/4(D + 1)3/4) ad-
ditional regret from learning to hint. Notably, this addi-
tive regret penalty is O(

√
(D + 1)T ) if D = O(T ) (and

o(
√

(D + 1)T ) when D = o(T )), so the learning to hint
strategy of Thm. 13 preserves minimax optimal regret rates.

Related work Rakhlin & Sridharan (2013a, Sec. 4.1)
propose and analyze a method to learn optimism strategies
for a two-step OMD base learner. Unlike Thm. 13, the
approach does not accommodate delay, and the analyzed
regret is only with respect to single hinting strategies ω ∈
{ej}j∈[m] rather than combination strategies, ω ∈ 4m−1.

7. Experiments
We now apply the online learning techniques developed
in this paper to the problem of adaptive ensembling for
subseasonal forecasting. Our experiments are based on
the subseasonal forecasting data of Flaspohler et al. (2021)
that provides the forecasts of d = 6 machine learning and
physics-based models for both temperature and precipita-
tion at two forecast horizons: 3-4 weeks and 5-6 weeks. In
operational subseasonal forecasting, feedback is delayed;
models make D = 2 or 3 forecasts (depending on the fore-
cast horizon) before receiving feedback. We use delayed,
optimistic online learning to play a time-varying convex
combination of input models and compete with the best
input model over a year-long prediction period (T = 26
semimonthly dates). The loss function is the geographic
root-mean squared error (RMSE) across 514 locations in
the Western United States.

We evaluate the relative merits of the delayed online learning
techniques presented by computing yearly regret and mean
RMSE for the ensemble plays made by the online leaner
in each year from 2011-2020. Unless otherwise specified,
all online learning algorithms use the recent g hint g̃s,
which approximates each unobserved subgradient at time
t with the most recent observed subgradient gt−D−1. See
App. L for full experimental details, App. N for algorithmic
details, and App. M for extended experimental results.

Competing with the best input model The primary ben-
efit of online learning in this setting is its ability to achieve
small average regret, i.e., to perform nearly as well as the
best input model in the competitor set U without knowing
which is best in advance. We run our three delayed online
learners—DORM, DORM+, and AdaHedgeD—on all four
subseasonal prediction tasks and measure their average loss.

The average yearly RMSE for the three online learning al-
gorithms and the six input models is shown in Table 1. The
DORM+ algorithm tracks the performance of the best input
model for all tasks except Temp. 5-6w. All online learning
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Table 1: Average RMSE of the 2011-2020 semimonthly forecasts: The average RMSE for online learning algorithms (left) and input
models (right) over a 10-year evaluation period with the top-performing learners and input models bolded and blue. In each task, the
online learners compare favorably with the best input model and learn to downweight the lower-performing candidates, like the worst
models italicized in red.

ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.726 21.731 21.675 21.973 22.431 22.357 21.978 21.986 23.344
PRECIP. 5-6W 21.868 21.957 21.838 22.030 22.570 22.383 22.004 21.993 23.257
TEMP. 3-4W 2.273 2.259 2.247 2.253 2.352 2.394 2.277 2.319 2.508
TEMP. 5-6W 2.316 2.316 2.303 2.270 2.368 2.459 2.278 2.317 2.569

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
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Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 21.726)

DORM (RMSE: 21.731)

DORM+ (RMSE: 21.675)

Figure 1: Overall performance: Yearly cumulative regret under
RMSE loss for the the Precip. 3-4w task. The zero line corresponds
to the performance of the best input model in a given year.

algorithms achieve negative regret for both precipitation
tasks. Fig. 1 shows the yearly cumulative regret (in terms
of the RMSE loss) of the online learning algorithms over
the 10-year evaluation period. There are several years (e.g.,
2012, 2014, 2020) in which all online learning algorithms
substantially outperform the best input forecasting model.
The consistently low regret year-to-year of DORM+ com-
pared to DORM and AdaHedgeD makes it a promising
candidate for real-world delayed subseasonal forecasting.
Notably, RM+ (a special case of DORM+) is known to have
small tracking regret, i.e., it competes well even with strate-
gies that switch between input models a bounded number
of times (Tammelin et al., 2015, Thm. 2). We suspect that
this is one source of DORM+’s superior performance. We
also note that the self-tuned AdaHedgeD performs compa-
rably to the the optimally-tuned DORM, demonstrating the
effectiveness of our self-tuning strategy.

Impact of regularization We evaluate the impact of the
three regularization strategies developed in this paper: 1)
the upper bound DUB strategy, 2) the tighter AdaHedgeD
strategy, and 3) the DORM+ algorithm that is tuning-free.
This tuning-free property has evident practical benefits, as
this section demonstrates.

Fig. 2 shows the yearly regret of the DUB, AdaHedgeD,
and DORM+ algorithms. A consistent pattern appears in
the yearly regret: DUB has moderate positive regret, Ada-
HedgeD has both the largest positive and negative regret
values, and DORM+ sits between these two extremes. If we
examine the weights played by each algorithm (Fig. 3), the

weights of DUB and AdaHedgeD appear respectively over-
and under-regularized compared to DORM+ (the top model
for this task). DUB’s use of the upper bound bt,F results
in a very large regularization setting (λT = 142.881) and
a virtually uniform weight setting. AdaHedgeD’s tighter
bound δt produces a value for λT = 3.005 that is two or-
ders of magnitude smaller. However, in this short-horizon
forecasting setting, AdaHedgeD’s aggressive plays result
in higher average RMSE. By nature of it’s λt-free updates,
DORM+ produces more moderately regularized plays wt

and negative regret.

To replicate or not to replicate In this section, we com-
pare the performance of replicated and non-replicated vari-
ants of our DORM+ algorithm. Both algorithms perform
well (see App. M.3), but in all tasks, DORM+ outperforms
replicated DORM+ (in which D + 1 independent copies
of DORM+ make staggered predictions). Fig. 4 provides
an example of the weight plots produced by the replication
strategy in the Temp. 5-6w task with D = 3. The sepa-
rate nature of the replicated learner’s plays is evident in the
weight plots and leads to an average RMSE of 2.315, versus
2.303 for DORM+ in the Temp. 5-6w task.

Learning to hint Finally, we examine the effect of op-
timism on the DORM+ algorithms and the ability of our
“learning to hint” strategy to recover the performance of
the best optimism strategy in retrospect. Following the
hint construction protocol in App. N.2, we run the DORM+
base algorithm with m = 4 subgradient hinting strategies:
g̃s = gt−D−1 (recent g), g̃s = gs−D−1 (prev g),

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
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0
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4

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 2.273)

DORM+ (RMSE: 2.247)

DUB (RMSE: 2.258)

Figure 2: Regret of regularizers: Yearly cumulative regret (in
terms of the RMSE loss) for the three regularization strategies for
the Temp. 3-4w task.
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Figure 3: Impact of regularization: The plays wt of online learning algorithms used to combine the input models for the Temp. 3-4w
task in the 2020 evaluation year. The weights of DUB and AdaHedgeD appear respectively over and under regularized compared to
DORM+ (the top model for this task) due to their selection of regularization strength λt (right).
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Figure 4: To replicate or not to replicate: The plays wt of stan-
dard DORM+ and replicated DORM+ algorithms for the Temp. 5-
6w task in the final evaluation year.
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Figure 5: Learning to hint: Yearly cumulative regret (in terms of
the RMSE loss) for the adaptive hinting and four constant hinting
strategies for the Precip. 3-4w task.

g̃s = D+1
t−D−1g1:t−D−1 (mean g), or g̃s = 0 (none). We

also use DORM+ as the meta-algorithm for hint learning
to produce the learned optimism strategy that plays a
convex combination of the four hinters. In Fig. 5, we first
note that several optimism strategies outperform the none
hinter, confirming the value of optimism in reducing regret.
The learned variant of DORM+ avoids the worst-case
performance of the individual hinters in any given year (e.g.,
2015), while staying competitive with the best strategy (al-
though it does not outperform the dominant recent g
strategy overall). We believe the performance of the online
hinter could be further improved by developing tighter con-
vex bounds on the regret of the base problem in the spirit of
Assump. 1.

8. Conclusion
In this work, we confronted the challenges of delayed feed-
back and short regret horizons in online learning with opti-
mism, developing practical non-replicated, self-tuned and
tuning-free algorithms with optimal regret guarantees. Our
“delay as optimism” reduction and our refined analysis of
optimistic learning produced novel regret bounds for both
optimistic and delayed online learning and elucidated the
connections between these two problems. Within the sub-
seasonal forecasting domain, we demonstrated that delayed
online learning methods can produce zero-regret forecast en-
sembles that perform robustly from year-to-year. Our results
highlighted DORM+ as a particularly promising candidate
due to its tuning-free nature and small tracking regret.

In future work, we are excited to further develop optimism
strategies under delay by 1) employing tighter convex loss
bounds on the regret of the base algorithm to improve the
learning to hint algorithm, 2) exploring the relative impact of
hinting for “past” (gt−D:t−1) versus “future” (gt) missing
subgradients (see App. M.5 for an initial exploration), and
3) developing adaptive self-tuning variants of the DOOMD
algorithm. Within the subseasonal domain, we plan to lever-
age the flexibility of our optimism formulation to explore
hinting strategies that use meteorological expertise to im-
prove beyond the generic mean and past subgradient hints
and to deploy our open-source subseasonal forecasting al-
gorithms operationally.
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A. Extended Literature Review
We review here additional prior work not detailed in the main paper.

A.1. General online learning

We recommend the monographs of Shalev-Shwartz (2012); Orabona (2019) and the textbook of Cesa-Bianchi & Lugosi
(2006) for surveys of the field of online learning and Joulani et al. (2017); McMahan (2017) for widely applicable and
modular analyses of online learning algorithms.

A.2. Online learning with optimism but without delay

Syrgkanis et al. (2015) analyzed optimistic FTRL and two-step variant of optimistic MD without delay. The work focuses
on a particular form of optimism (using the last observed subgradient as a hint) and shows improved rates of convergence to
correlated equilibria in multiplayer games. In the absence of delay, Steinhardt & Liang (2014) combined optimism and
adaptivity to obtain improvements over standard optimistic regret bounds.

A.3. Online learning with delay but without optimism

Overview Joulani et al. (2013; 2016); McMahan & Streeter (2014) provide broad reviews of progress on delayed online
learning.

Delayed stochastic optimization Recht et al. (2011); Agarwal & Duchi (2011); Nesterov (2012); Liu et al. (2014); Liu &
Wright (2015); Sra et al. (2016) studied the effects of delay on stochastic optimization but do not treat the adversarial setting
studied here.

FTRL-Prox vs. FTRL Joulani et al. (2016) analyzed the delayed feedback regret of the FTRL-Prox algorithm, which
regularizes toward the last played iterate as in online mirror descent, but did not study the standard FTRL algorithms
(sometimes called FTRL-Centered) analyzed in this work.

A.4. Self-tuned online learning without delay or optimism

In the absence of optimism and delay, de Rooij et al. (2014); Orabona & Pál (2015); Koolen et al. (2014) developed
alternative variants of FTRL algorithms that self-tune their learning rates.

A.5. Online learning without delay for climate forecasting

Monteleoni et al. (2011) applied the Learn-α online learning algorithm of Monteleoni & Jaakkola (2004) to the task of
ensembling climate models. The authors considered historical temperature data from 20 climate models and tracked the
changing sequence of which model predicts best at any given time. In this context, the algorithm used was based on a
set of generalized Hidden Markov Models, in which the identity of the current best model is the hidden variable and the
updates are derived as Bayesian updates. This work was extended to take into account the influence of regional neighboring
locations when performing updates (McQuade & Monteleoni, 2012). These initial results demonstrated the promise of
applying online learning to climate model ensembling, but both methods rely on receiving feedback without delay.

B. Proof of Thm. 3: OFTRL regret
We will prove the following more general result for optimistic adaptive FTRL (OAFTRL)

wt+1 = argminw∈W 〈g1:t + g̃t+1,w〉+ λt+1ψ(w), (OAFTRL)

from which Thm. 3 will follow with the choice λt = λ for all t ≥ 1.
Theorem 14 (OAFTRL regret). If ψ is nonnegative and (λt)t≥1 is non-decreasing, then, ∀u ∈W, the OAFTRL iterates
wt satisfy,

RegretT (u) ≤ λTψ(u) +
∑T
t=1 δt

≤ λTψ(u) +
∑T
t=1 min

(
1
λt

huber(‖gt − g̃t‖∗, ‖gt‖∗),diam(W) min(‖gt − g̃t‖∗, ‖gt‖∗)
)
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for

δt , min(Ft+1(wt, λt)− Ft+1(w̄t, λt), 〈gt,wt − w̄t〉,
Ft+1(ŵt, λt)− Ft+1(w̄t, λt) + 〈gt,wt − ŵt〉)+ with

w̄t , argminw∈W Ft+1(w, λt), Ft+1(w, λt) , λtψ(w) + 〈g1:t,w〉, and

ŵt , argminw∈W λtψ(w) + 〈g1:t + min( ‖gt‖∗
‖g̃t−gt‖∗ , 1)(g̃t − gt),w〉.

Proof. Consider a sequence of arbitrary auxiliary subgradient hints g̃∗1, . . . , g̃
∗
T ∈ Rd and the auxiliary OAFTRL sequence

w∗t+1 = argminw∗∈W 〈g1:t + g̃∗t+1,w
∗〉+ λt+1ψ(w∗) for 0 ≤ t ≤ T with g̃∗T+1 , 0 and λT+1 = λT . (4)

Generalizing the forward regret decomposition of Joulani et al. (2017) and the prediction drift decomposition of Joulani et al.
(2016), we will decompose the regret of our original (wt)

T
t=1 sequence into the regret of the auxiliary sequence (w∗t )

T
t=1

and the drift between (wt)
T
t=1 and (w∗t )

T
t=1.

For each time t, define the auxiliary optimistic objective function F̃ ∗t (w) = Ft(w) + 〈g̃∗t ,w〉. Fixing any u ∈W, we have
the regret bound

RegretT (u) =
∑T
t=1 `t(wt)− `t(u) ≤∑T

t=1〈gt,wt − u〉 (since each `t is convex with gt ∈ ∂`t(wt))

=
∑T
t=1〈gt,wt −w∗t 〉︸ ︷︷ ︸

drift

+
∑T
t=1〈gt,w∗t − u〉︸ ︷︷ ︸

auxiliary regret

.

To control the drift term we employ the following lemma, proved in App. B.1, which bounds the difference between two
OAFTRL optimizers with different losses but common regularizers.

Lemma 15 (OAFTRL difference bound). The OAFTRL and auxiliary OAFTRL iterates (4), wt and w∗t , satisfy

‖wt −w∗t ‖ ≤ min( 1
λt
‖g̃t − g̃∗t ‖∗,diam(W)).

Letting a = diam(W) ∈ R ∪ {∞}, we now bound each drift term summand using the Fenchel-Young inequality for dual
norms and Lem. 15:

〈gt,wt −w∗t 〉 ≤ ‖gt‖∗‖wt −w∗t ‖ ≤ min
(

1
λt
‖gt‖∗‖g̃t − g̃∗t ‖∗, a‖gt‖∗

)
.

To control the auxiliary regret, we begin by invoking the OAFTRL regret bound of Orabona (2019, proof of Thm. 7.28), the
nonnegativity of ψ, and the assumption that (λt)t≥1 is non-decreasing:∑T

t=1〈gt,w∗t − u〉 ≤ λT+1ψ(u)− λ1ψ(w∗1) +
∑T
t=1 Ft+1(w∗t , λt)− Ft+1(w̄t, λt) + (λt − λt+1)ψ(w∗t+1)

≤ λT+1ψ(u)− λ1ψ(w∗1) +
∑T
t=1 Ft+1(w∗t , λt)− Ft+1(w̄t, λt).

We next bound the summands in this expression in two ways. Since w∗t is the minimizer of F̃ ∗t , we may apply the
Fenchel-Young inequality for dual norms to conclude that

Ft+1(w∗t , λt)− Ft+1(w̄t, λt) = F̃ ∗t (w∗t ) + 〈w∗t ,gt − g̃∗t 〉 − (F̃ ∗t (w̄t) + 〈w̄t,gt − g̃∗t 〉)
≤ 〈w∗t − w̄t,gt − g̃∗t 〉 ≤ ‖w∗t − w̄t‖‖gt − g̃∗t ‖∗ ≤ a‖gt − g̃∗t ‖∗.

Moreover, by Orabona (2019, proof of Thm. 7.28) and the fact that w̄t minimizes Ft+1(·, λt) over W,

Ft+1(w∗t , λt)− Ft+1(w̄t, λt) ≤ ‖gt−g̃
∗
t ‖

2
∗

2λt
.

Our collective bounds establish that

δt(g̃
∗
t ) , Ft+1(w∗t , λt)− Ft+1(w̄t, λt) + 〈gt,wt −w∗t 〉
≤ min( 1

2λt
‖gt − g̃∗t ‖2∗, a‖gt − g̃∗t ‖∗) + min( 1

λt
‖gt‖∗‖g̃t − g̃∗t ‖∗, a‖gt‖∗)

≤ 1
2λt
‖gt − g̃∗t ‖2∗ + 1

λt
‖gt‖∗‖g̃t − g̃∗t ‖∗.
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To obtain an interpretable bound on regret, we will minimize the final expression over all convex combinations g̃∗t of gt and
g̃t. The optimal choice is given by

ĝt = gt + c∗(g̃t − gt) for

c∗ , min( ‖gt‖∗
‖g̃t−gt‖∗ , 1) = argmin

c≤1,g̃∗t=gt+c(g̃t−gt)

1
2λt
‖gt − g̃∗t ‖2∗ + 1

λt
‖gt‖∗‖g̃t − g̃∗t ‖∗

= argminc≤1
c2

2λt
‖gt − g̃t‖2∗ + 1−c

λt
‖gt‖∗‖g̃t − gt‖∗.

For this choice, we obtain the bound

(δt(ĝt))+ ≤ 1
2λt
‖gt − ĝt‖2∗ + 1

λt
‖gt‖∗‖ĝt − g̃t‖∗

=
c2∗
2λt
‖gt − g̃t‖2∗ + 1−c∗

λt
‖gt‖∗‖gt − g̃t‖∗

= 1
2λt

min(‖gt − g̃t‖∗, ‖gt‖∗)2 + 1
λt
‖gt‖∗(‖gt − g̃t‖∗ − ‖gt‖∗)+

= 1
2λt

(‖gt − g̃t‖2∗ − (‖gt − g̃t‖∗ − ‖gt‖∗)2
+)

= 1
λt

huber(‖gt − g̃t‖∗, ‖gt‖∗)

and therefore

δt = min(δt(g̃t), δt(gt), δt(ĝt))+ ≤ min( 1
λt

huber(‖gt − g̃t‖∗, ‖gt‖∗), amin(‖gt − g̃t‖∗, ‖gt‖∗)). (5)

Since g̃∗t is arbitrary, the advertised regret bounds follow as

RegretT (u) ≤ inf g̃∗1 ,...,g̃∗T∈Rd λT+1ψ(u) +
∑T
t=1 δt(g̃

∗
t )

= λT+1ψ(u) +
∑T
t=1 inf g̃∗t∈Rd δt(g̃

∗
t )

≤ λT+1ψ(u) +
∑T
t=1 min(δt(g̃t), δt(gt), δt(ĝt))+.

B.1. Proof of Lem. 15: OAFTRL difference bound

Fix any time t, and define the optimistic objective function F̃t(w) = λtψ(w) +
∑t−1
i=1〈gi,w〉+ 〈g̃t,w〉 and the auxiliary

optimistic objective function F̃ ∗t (w) = λtψ(w) +
∑t−1
i=1〈gi,w〉 + 〈g̃∗t ,w〉 so that wt ∈ argminw∈W F̃t(w) and w∗t ∈

argminw∈W F̃ ∗t (w). We have

F̃ ∗t (wt)− F̃ ∗t (w∗t ) ≥ λt
2 ‖wt −w∗t ‖2 by the strong convexity of F̃ ∗t and

F̃t(w
∗
t )− F̃t(wt) ≥ λt

2 ‖wt −w∗t ‖2 by the strong convexity of F̃t.

Summing the above inequalities and applying the Fenchel-Young inequality for dual norms, we obtain

λt‖wt −w∗t ‖2 ≤ 〈g̃∗t − g̃t,wt −w∗t 〉 ≤ ‖g̃t − g̃∗t ‖∗‖wt −w∗t ‖,

which yields the first half of our target bound after rearrangement. The second half follows from the definition of diameter,
as ‖wt −w∗t ‖ ≤ diam(W).

C. Proof of Thm. 4: SOOMD regret
We will prove the following more general result for adaptive SOOMD (ASOOMD)

wt+1 = argmin
w∈W

〈gt + g̃t+1 − g̃t,w〉+ λt+1Bψ(w,wt) with arbitrary w0 and g0 = g̃0 = 0 (ASOOMD)

from which Thm. 4 will follow with the choice λt = λ for all t ≥ 1.
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Theorem 16 (ASOOMD regret). Fix any λT+1 ≥ 0. If each (λt+1 − λt)ψ is proper and differentiable, λ0 , 0, and
g̃T+1 , 0, then, for all u ∈W, the ASOOMD iterates wt satisfy

RegretT (u) ≤∑T
t=0(λt+1 − λt)Bψ(u,wt)+∑T
t=1 min

(
diam(W)‖gt − g̃t‖∗, 1

λt+1
huber(‖gt − g̃t‖∗, ‖gt + g̃t+1 − g̃t‖∗)

)
.

Proof. Fix any u ∈W, instantiate the notation of Joulani et al. (2017, Sec. 7.2), and consider the choices

• r1 = λ2ψ, rt = (λt+1 − λt)ψ for t ≥ 2, so that r1:t = λt+1ψ for t ≥ 1,

• qt = q̃t + 〈g̃t+1 − g̃t, ·〉 for t ≥ 0,

• q̃0(w) = λ1Bψ(w,w0) and q̃t ≡ 0 for all t ≥ 1,

• p1 , r1 − q0 = r1 − q̃0 − 〈g̃1 − g̃0, ·〉 = λ2ψ − λ1Bψ(·,w0)− 〈g̃1 − g̃0, ·〉,

• pt , rt − qt−1 = rt − q̃t−1 − 〈g̃t − g̃t−1, ·〉 = (λt+1 − λt)ψ − 〈g̃t − g̃t−1, ·〉 for all t ≥ 2.

Since, for each t, δt = 0 and `t is convex, the ADA-MD regret inequality of Joulani et al. (2017, Eq. (24)) and the choice
g̃T+1 = 0 imply that

RegretT (u) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(u)

≤ −
T∑
t=1

B`t(u,wt) +

T∑
t=0

qt(u)− qt(wt+1) +

T∑
t=1

Bpt(u,wt)

−
T∑
t=1

Br1:t(wt+1,wt) +

T∑
t=1

〈gt,wt −wt+1〉+

T∑
t=1

δt

≤ λ1(Bψ(u,w0)− Bψ(w1,w0)) +

T∑
t=0

〈g̃t+1 − g̃t,u−wt+1〉

+

T∑
t=1

(λt+1 − λt)Bψ(u,wt) +

T∑
t=1

〈gt,wt −wt+1〉 − λt+1Bψ(wt+1,wt)

=

T∑
t=0

(λt+1 − λt)Bψ(u,wt) +

T∑
t=0

〈gt − g̃t,wt −wt+1〉 − λt+1Bψ(wt+1,wt). (6)

To obtain our advertised bound, we begin with the expression (6) and invoke the 1-strong convexity of ψ and the nonnegativity
of Bλψ(w1,w0) to find

RegretT (u) ≤∑T
t=0(λt+1 − λt)Bψ(u,wt) +

∑T
t=0〈gt − g̃t,wt −wt+1〉 − λt+1Bψ(wt+1,wt)

≤∑T
t=0(λt+1 − λt)Bψ(u,wt) +

∑T
t=1〈gt − g̃t,wt −wt+1〉 − λt+1

2 ‖wt −wt+1‖2. (7)

We will bound the final sum in this expression using two lemmas. The first is a bound on the difference between subsequent
ASOOMD iterates distilled from Joulani et al. (2016, proof of Prop. 2).

Lemma 17 (ASOOMD iterate bound (Joulani et al., 2016, proof of Prop. 2)). If ψ is differentiable and 1-strongly convex
with respect to ‖·‖, then the ASOOMD iterates satisfy

‖wt −wt+1‖ ≤ 1
λt+1
‖gt + g̃t+1 − g̃t‖∗.

The second, proved in App. C.1, is a general bound on 〈g,v〉 − λ
2 ‖v‖2 under a norm constraint on v.
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Lemma 18 (Norm-constrained conjugate). For any g ∈ Rd and λ, c, b > 0,

sup
v∈Rd:‖v‖≤min( cλ ,b)

〈g,v〉 − λ
2 ‖v‖2 = 1

λ min(‖g‖∗, c, bλ)(‖g‖∗ − 1
2 min(‖g‖∗, c, bλ))

≤ min(b‖g‖∗, 1
λ min(‖g‖∗, c)(‖g‖∗ − 1

2 min(‖g‖∗, c)))
= min(b‖g‖∗, 1

2λ (‖g‖2∗ − (‖g‖∗ −min(‖g‖∗, c))2))

= min(b‖g‖∗, 1
2λ (‖g‖2∗ − (‖g‖∗ − c)2

+))

≤ min( 1
2λ‖g‖2∗, 1

λc‖g‖∗, b‖g‖∗).

By Lems. 17 and 18 and the definition of a , diam(W), each summand in our regret bound (7) satisfies

〈gt − g̃t,wt −wt+1〉 − λt+1

2 ‖wt −wt+1‖2 ≤ sup
v∈Rd:‖v‖≤min( 1

λt+1
‖gt+g̃t+1−g̃t‖∗,a)

〈gt − g̃t,v〉 − λt+1

2 ‖v‖2

= min
(
a‖gt − g̃t‖∗, 1

2λt+1
(‖gt − g̃t‖2∗ − (‖gt − g̃t‖∗ − ‖gt + g̃t+1 − g̃t‖∗)2

+)
)

yielding the advertised result.

C.1. Proof of Lem. 18: Norm-constrained conjugate

By the definition of the dual norm,

sup
v∈Rd:‖v‖≤min( cλ ,b)

〈g,v〉 − λ
2 ‖v‖2 = sup

a≤min( cλ ,b)

sup
v∈Rd:‖v‖≤a

〈g,v〉 − λ
2a

2 = sup
a≤min( cλ ,b)

a‖g‖∗ − λ
2a

2

= 1
λ min(‖g‖∗, c, bλ)(‖g‖∗ − 1

2 min(‖g‖∗, c, bλ)) ≤ min( 1
λc‖g‖∗, b‖g‖∗).

We compare to the values of less constrained optimization problems to obtain the final inequalities:

sup
a≤min( cλ ,b)

a‖g‖∗ − λ
2a

2 ≤ sup
a≤ c

λ

a‖g‖∗ − λ
2a

2 = 1
λ min(‖g‖∗, c)(‖g‖∗ − 1

2 min(‖g‖∗, c))

≤ sup
a>0

a‖g‖∗ − λ
2a

2 = 1
λ

1
2‖g‖2∗.

D. Proof of Lem. 8: DORM is ODAFTRL and DORM + is DOOMD
Our derivations will make use of several facts about `p norms, summarized in the next lemma.

Lemma 19 (`p norm facts). For p ∈ (1,∞), ψ(w) = 1
2‖w‖2p, and any vectors w,v ∈ Rd and w̃0 ∈ Rd+,

∇ψ(w) = ∇ 1
2‖w‖2p = sign(w)|w|p−1/‖w‖p−2

p (8)

〈w,∇ψ(w)〉 = ‖w‖2p = 2ψ(w)

ψ∗(v) = sup
w∈Rd

〈w,v〉 − ψ(w) = 1
2‖v‖2q for 1/q = 1− 1/p (9)

∇ψ∗(v) = sign(v)|v|q−1/‖v‖q−2
q

ψ∗+(v) = sup
w∈Rd+

〈w,v〉 − ψ(w) = sup
w∈Rd

〈w, (v)+〉 − ψ(w) = 1
2‖(v)+‖2q

∇ψ∗+(v) = argmax
w∈Rd+

〈w,v〉 − ψ(w) = argmin
w∈Rd+

ψ(w)− 〈w,v〉 = (v)q−1
+ /‖(v)+‖q−2

q (10)

min
w̃∈Rd+

Bλψ(w̃, w̃0)− 〈v, w̃〉 = λ(〈w̃0,∇ψ(w̃0)〉 − ψ(w̃0)− sup
w̃∈Rd+

〈w̃,∇ψ(w̃0) + v/λ〉 − ψ(w̃))

= λ(〈w̃0,∇ψ(w̃0)〉 − ψ(w̃0)− ψ∗+(∇ψ(w̃0) + v/λ))

= λ(ψ(w̃0)− ψ∗+(∇ψ(w̃0) + v/λ))

= λ(ψ(w̃0)− 1
2‖(∇ψ(w̃0) + v/λ)+‖2q)

= λ( 1
2‖w̃0‖2p − 1

2‖(w̃
p−1
0 /‖w̃0‖p−2

p + v/λ)+‖2q).
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Proof. The fact (8) follows from the chain rule as

∇j 1
2‖w‖2p = 1

2∇j(‖w‖pp)2/p = 1
p (‖w‖pp)(2/p)−1∇j‖w‖pp = 1

p‖w‖2−pp ∇j
∑d
j′=1 |wj′ |p

= 1
p‖w‖2−pp p sign(wj)|wj |p−1 = sign(wj)|wj |p−1/‖w‖p−2

p .

The fact (9) follows from Lem. 18 as ‖·‖q is the dual norm of ‖·‖p.

We now prove each claim in turn.

D.1. DORM is ODAFTRL

Fix p ∈ (1, 2], λ > 0, and t ≥ 0. The ODAFTRL iterate with hint −ht+1, W , Rd+, ψ(w̃) = 1
2‖w̃‖2p, loss subgradients

gODAFTRL
1:t−D = −r1:t−D, and regularization parameter λ takes the form

argmin
w̃∈Rd+

λψ(w̃)− 〈w̃,ht+1 + r1:t−D〉

= argmin
w̃∈Rd+

ψ(w̃)− 〈w̃, (ht+1 + r1:t−D)/λ〉

= ((r1:t−D + ht+1)/λ)q−1
+ /‖((r1:t−D + ht+1)/λ)+‖q−2

q by (10)

= ((r1:t−D + ht+1)/λ)q−1
+ ‖((r1:t−D + ht+1)/λ)q−1

+ ‖p−2
p since (p− 1)(q − 1) = 1

= w̃t+1‖w̃t+1‖p−2
p

proving the claim.

D.2. DORM+ is DOOMD

Fix p ∈ (1, 2] and λ > 0, and let (w̃t)t≥0 denote the unnormalized iterates generated by DORM+ with hints ht, instantaneous
regrets rt, regularization parameter λ, and hyperparameter q. For p = q/(q − 1), let (w̄t)t≥0 denote the sequence generated
by DOOMD with w̄0 = 0, hints −ht, W , Rd+, ψ(w̃) = 1

2‖w̃‖2p, loss subgradients gDOOMD
t = −rt, and regularization

parameter λ. We proceed by induction to show that, for each t, w̄t = w̃t‖w̃t‖p−2
p .

Base case By assumption, w̄0 = 0 = w̃0‖w̃0‖p−2
p , confirming the base case.

Inductive step Fix any t ≥ 0 and assume that for each s ≤ t, w̄s = w̃s‖w̃s‖p−2
p . Then, by the definition of DOOMD

and our `p norm facts,

w̄t+1 = argmin
w̄∈Rd+

〈−ht+1 + ht − rt−D, w̄〉+ Bλψ(w̄, w̄t)

= argmin
w̄∈Rd+

λ(ψ(w̄)− ψ(w̄t)− 〈w̄ − w̄t,∇ψ(w̄t)〉) + 〈−ht+1 + ht − rt−D, w̄〉

= argmin
w̄∈Rd+

ψ(w̄)− 〈w̄,∇ψ(w̄t) + (rt−D − ht + ht+1)/λ〉

= argmin
w̄∈Rd+

ψ(w̄)− 〈w̄, w̄p−1
t /‖w̄t‖p−2

p + (rt−D − ht + ht+1)/λ〉 by (8)

= argmin
w̄∈Rd+

ψ(w̄)− 〈w̄, w̃p−1
t + (rt−D − ht + ht+1)/λ〉 by the inductive hypothesis

= (w̃p−1
t + (rt−D − ht + ht+1)/λ)q−1

+ /‖(w̃p−1
t + (rt−D − ht + ht+1)/λ)+‖q−2

q by (10)

= (w̃p−1
t + (rt−D − ht + ht+1)/λ)q−1

+ ‖(w̃p−1
t + (rt−D − ht + ht+1)/λ)q−1

+ ‖p−2
p since (p− 1)(q − 1) = 1

= w̃t+1‖w̃t+1‖p−2
p ,

completing the inductive step.
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E. Proof of Lem. 7: DORM and DORM+ are independent of λ
We will prove the following more general result, from which the stated result follows immediately.

Lemma 20 (DORM and DORM+ are independent of λ). Consider either DORM or DORM+ plays w̃t as a function of
λ > 0, and suppose that for all time points t, the observed subgradient gt and chosen hint ht+1 only depend on λ through
(ws, λ

q−1w̃s,gs−1,hs)s≤t and (ws, λ
q−1w̃s,gs,hs)s≤t respectively. Then if λq−1w̃0 is independent of the choice of

λ > 0, then so is λq−1w̃t for all time points t. As a result, wt ∝ λq−1w̃t is also independent of the choice of λ > 0 at all
time points.

Proof. We prove each result by induction on t.

E.1. Scaled DORM iterates λq−1w̃t are independent of λ

Base case By assumption, h1 is independent of the choice of λ > 0. Hence λq−1w̃1 = (h1)q−1
+ is independent of λ > 0,

confirming the base case.

Inductive step Fix any t ≥ 0, suppose λq−1w̃s is independent of the choice of λ > 0 for all s ≤ t, and consider

λq−1w̃t+1 = (r1:t−D + ht+1)q−1
+ .

Since r1:t−D depends on λ only through ws and gs for s ≤ t−D, our λ dependence assumptions for (gs,hs+1)s≤t; the
fact that, for each s, ws ∝ λq−1w̃s; and our inductive hypothesis together imply that λq−1w̃t+1 is independent of λ > 0.

E.2. Scaled DORM+ iterates λq−1w̃t are independent of λ

Base case By assumption, λq−1w̃0 is independent of the choice of λ > 0, confirming the base case.

Inductive step Fix any t ≥ 0 and suppose λq−1w̃s is independent of the choice of λ > 0 for all s ≤ t. Since
(p− 1)(q − 1) = 1,

λq−1w̃t+1 = (λw̃p−1
t + rt−D − ht + ht+1)q−1

+ = ((λq−1w̃t)
p−1 + rt−D − ht + ht+1)q−1

+ .

Since rt−D depends on λ only through wt−D and gt−D, our λ dependence assumptions for (gs,hs+1)s≤t; the fact that, for
each s ≤ t, ws ∝ λq−1w̃s; and our inductive hypothesis together imply that λq−1w̃t+1 is independent of λ > 0.

F. Proof of Cor. 9: DORM and DORM+ regret
Fix any λ > 0 and u ∈ 4d−1, consider the unnormalized DORM or DORM+ iterates w̃t, and define w̄t = w̃t‖w̃t‖p−2

p for
each t. For either algorithm, we will bound our regret in terms of the surrogate losses

ˆ̀
t(w̃) , −〈rt, w̃〉 = 〈gt, w̃〉 − 〈w̃,1〉〈gt,wt〉

defined for w̃ ∈ Rd+. Since ˆ̀
t(u) = 〈gt,u−wt〉, ˆ̀

t(w̄t) = 0, and each `t is convex, we have

RegretT (u) =
∑T
t=1 `t(wt)− `t(u) ≤∑T

t=1〈gt,wt − u〉 =
∑T
t=1

ˆ̀
t(w̄t)− ˆ̀

t(u).

For DORM, Lem. 8 implies that (w̄t)t≥1 are ODFTRL iterates, so the ODFTRL regret bound (Thm. 5) and the fact that ψ is
1-strongly convex with respect to ‖·‖ =

√
p− 1‖·‖p (see Shalev-Shwartz, 2007, Lemma 17) with ‖·‖∗ = 1√

p−1
‖·‖q imply

RegretT (u) ≤ λ
2 ‖u‖2p + 1

λ(p−1)

∑T
t=1 bt,q.

Similarly, for DORM+, Lem. 8 implies that (w̄t)t≥0 are DOOMD iterates with w̄0 = 0, so the DOOMD regret bound
(Thm. 6) and the strong convexity of ψ yield

RegretT (u) ≤ Bλ
2 ‖·‖2p

(u,0) + 1
λ(p−1)

∑T
t=1 bt,q = λ

2 ‖u‖2p + 1
λ(p−1)

∑T
t=1 bt,q.
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Since, by Lem. 7, the choice of λ does not impact the iterate sequences played by DORM and DORM+, we may take the
infimum over λ > 0 in these regret bounds. The second advertised inequality comes from the identity 1

p−1 = q − 1 and the
norm equivalence relations ‖v‖q ≤ d1/q‖v‖∞ and ‖v‖p ≤ ‖v‖1 = 1 for v ∈ Rd, as shown in Lem. 21 below. The final
claim follows as

infq′≥2 d
2/q′(q′ − 1) = infq′≥2 22 log2(d)/q′(q′ − 1) ≤ 22 log2(d)/(2 log2(d))(2 log2(d)− 1) = 2(2 log2(d)− 1)

since d > 1.

Lemma 21 (Equivalence of p-norms). If x ∈ Rn and q > q′ ≥ 1, then ‖x‖q ≤ ‖x‖q′ ≤ n(1/q′−1/q)‖x‖q .

Proof. To show ‖x‖q ≤ ‖x‖q′ for q > q′ ≥ 1, suppose without loss of generality that ‖x‖q′ = 1. Then, ‖x‖qq =∑n
i=1 |xi|q ≤

∑n
i=1 |xi|q

′
= ‖x‖q

′

q′ = 1. Hence ‖x‖q ≤ 1 = ‖x‖q′ .

For the inequality ‖x‖q′ ≤ n1/q′−1/q‖x‖q , applying Hölder’s inequality yields

‖x‖q
′

q′ =
∑n
i=1 1 · |xi|q

′ ≤ (
∑n
i=1 1)

1− q
′
q (
∑n
i=1 |xi|q)

q′
q = n1− q

′
q ‖x‖q′q ,

so ‖x‖q′ ≤ n1/q′−1/q‖x‖q .

G. Proof of Thm. 10: ODAFTRL regret
Since ODAFTRL is an instance of OAFTRL with g̃t+1 = ht+1−

∑t
s=t−D+1 gs, the ODAFTRL result follows immediately

from the OAFTRL regret bound, Thm. 14.

H. Proof of Thm. 11: DUB Regret
Fix any u ∈W. By Thm. 10, ODAFTRL admits the regret bound

RegretT (u) ≤ λTψ(u) +
∑T
t=1 min( 1

λt
bt,F ,at,F ).

To control the second term in this bound, we apply the following lemma proved in App. H.1.

Lemma 22 (DUB-style tuning bound). Fix any α > 0 and any non-negative sequences (at)
T
t=1, (bt)

T
t=1. If

∆∗t+1 , 2 maxj≤t−D−1 aj−D+1:j +
√∑t−D

i=1 a2
i + 2αbi ≤ αλt+1 for each t

then ∑T
t=1 min(b2t/λt, at) ≤ ∆∗T+D+1 ≤ αλT+D+1.

Since λT ≤ λT+D+1, the result now follows by setting at = at,F and bt = bt,F , so that

RegretT (u) ≤ λTψ(u) + αλT+D+1 ≤ (ψ(u) + α)λT+D+1.

H.1. Proof of Lem. 22: DUB-style tuning bound

We prove the claim

∆t ,
∑t
i=1 min(bi/λi, ai) ≤ ∆∗t+D+1 ≤ αλt+D+1

by induction on t.

Base case For t ∈ [D + 1],∑t
i=1 min(bi/λi, ai) ≤ a1:t−1 + at ≤ 2 maxj≤t−1 aj−D+1:j +

√∑t
i=1 a

2
i + 2αbi = ∆∗t+D+1 ≤ αλt+D+1

confirming the base case.
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Inductive step Now fix any t+ 1 ≥ D + 2 and suppose that

∆i ≤ ∆∗i+D+1 ≤ αλi+D+1

for all 1 ≤ i ≤ t. We apply this inductive hypothesis to deduce that, for each 0 ≤ i ≤ t,

∆2
i+1 −∆2

i = (∆i + min(bi+1/λi+1, ai+1))
2 −∆2

i = 2∆i min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)2

= 2∆i−D min(bi+1/λi+1, ai+1) + 2(∆i −∆i−D) min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)2

= 2∆i−D min(bi+1/λi+1, ai+1) + 2

i∑
j=i−D+1

min(bj/λj , aj) min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)2

≤ 2αλi+1 min(bi+1/λi+1, ai+1) + 2ai−D+1:i min(bi+1/λi+1, ai+1) + a2
i+1

≤ 2αbi+1 + a2
i+1 + 2ai−D+1:i min(bi+1/λi+1, ai+1).

Now, we sum this inequality over i = 0, . . . , t, to obtain

∆2
t+1 ≤

∑t
i=0(2αbi+1 + a2

i+1) + 2
∑t
i=0 ai−D+1:i min(bi+1/λi+1, ai+1)

=
∑t+1
i=1(2αbi + a2

i ) + 2
∑t+1
i=1 ai−D:i−1 min(bi/λi, ai)

≤∑t+1
i=1(a2

i + 2αbi) + 2 maxj≤t aj−D+1:j

∑t+1
i=1 min(bi/λi, ai)

=
∑t+1
i=1(a2

i + 2αbi) + 2∆t+1 maxj≤t aj−D+1:j .

Solving this quadratic inequality and applying the triangle inequality, we have

∆t+1 ≤ maxj≤t aj−D+1:j + 1
2

√
(2 maxj≤t aj−D+1:j)2 + 4

∑t+1
i=1 a

2
i + 2αbi

≤ 2 maxj≤t aj−D+1:j +
√∑t+1

i=1 a
2
i + 2αbi = ∆∗t+D+2 ≤ αλt+D+2.

I. Proof of Thm. 12: AdaHedgeD Regret
Fix any u ∈W. Since the AdaHedgeD regularization sequence (λt)t≥1 is non-decreasing, Thm. 14 gives the regret bound

RegretT (u) ≤ λTψ(u) +
∑T
t=1 δt = λTψ(u) + αλT+D+1 ≤ (ψ(u) + α)λT+D+1,

and the proof of Thm. 14 gives the upper estimate (5):

δt ≤ min
(

bt,F
λt

,at,F

)
for all t ∈ [T ]. (11)

Hence, it remains to bound λT+D+1. Since λ1 = · · · = λD+1 = 0 and α(λt+1 − λt) = δt−D for t ≥ D + 1,

αλ2
T+D+1 =

∑T+D
t=1 α(λ2

t+1 − λ2
t ) =

∑T+D
t=D+1

(
α(λt+1 − λt)2 + 2α(λt+1 − λt)λt

)
=
∑T
t=1

(
δ2
t /α+ 2δtλt+D

)
by the definition of λt+1

=
∑T
t=1

(
δ2
t /α+ 2δtλt + 2δt(λt+D − λt)

)
≤∑T

t=1

(
δ2
t /α+ 2δtλt + 2δt maxt∈[T ](λt+D − λt)

)
=
∑T
t=1

(
δ2
t /α+ 2δtλt

)
+ 2λT+D+1 maxt∈[T ] δt−D:t−1

≤∑T
t=1

(
a2
t,F /α+ 2bt,F

)
+ 2λT+D+1 maxt∈[T ] at−D:t−1,F by (11).

Solving the above quadratic inequality for λT+D+1 and applying the triangle inequality, we find

αλT+D+1 ≤ maxt∈[T ] at−D:t−1,F + 1
2

√
4(maxt∈[T ] at−D:t−1,F )2 + 4

∑T
t=1 a

2
t,F + 2αbt,F

≤ 2 maxt∈[T ] at−D:t−1,F +
√∑T

t=1 a
2
t,F + 2αbt,F .
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J. Proof of Thm. 13: Learning to hint regret
We begin by bounding the hinting problem regret. Since DORM+ is used for the hinting problem, the following result is an
immediate corollary of Cor. 9.

Corollary 23 (DORM+ hinting problem regret). With convex losses lt(ω) = ft(Htω) and no meta-hints, the DORM+
hinting problem iterates ωt satisfy, for each v ∈ 4m−1,

HintRegretT (v) ,
∑T
t=1 lt(ωt)−

∑T
t=1 lt(v) ≤

√
m2/q(q−1)

2

∑T
t=1 βt,∞ for

βt,∞ =

{
huber(‖∑t

s=t−D ρs‖∞, ‖ρt−D‖∞), for t < T
1
2‖
∑t
s=t−D ρs‖2∞, for t = T

where ρt , 1〈γt, ωt〉 − γt for γt ∈ ∂lt(ωt) is the instantaneous hinting problem regret.

If, in addition, q = argminq′≥2m
2/q′(q′ − 1), then HintRegretT (v) ≤

√
(2 log2(m)− 1)

∑T
t=1 βt,∞.

Our next lemma, proved in App. J.1, provides an interpretable bound for each βt,∞ term in terms of the hinting problem
subgradients (γt)t≥1.

Lemma 24 (Hinting problem subgradient regret bound). Under the notation and assumptions of Cor. 23,

βt,∞ ≤
{

huber(ξt, ζt) if t < T
1
2ξt if t = T

, for

ξt , 4(D + 1)
∑t
s=t−D ‖γs‖2∞ and

ζt , 4‖γt−D‖∞
∑t
s=t−D ‖γs‖∞.

Now fix any u ∈W. We invoke Assump. 1, Cor. 23, and Lem. 24 in turn to bound the base problem regret

RegretT (u) =
∑T
t=1 `t(wt)− `t(u)

≤ C0(u) + C1(u)
√∑T

t=1 ft(ht(ωt)) by Assump. 1

≤ C0(u) + C1(u)

√
infv∈V

∑T
t=1 ft(ht(v)) +

√
(2 log2(m)− 1)

∑T
t=1 βt,∞ by Cor. 23

≤ C0(u) + C1(u)

√
infv∈V

∑T
t=1 ft(ht(v)) +

√
(2 log2(m)− 1)( 1

2ξT +
∑T−1
t=1 huber(ξt, ζt)) by Lem. 24.

The advertised bound now follows from the triangle inequality.

J.1. Proof of Lem. 24: Hinting problem subgradient regret bound

Fix any t ∈ [T ]. The triangle inequality implies that

‖ρt‖∞ = ‖γt − 1〈ωt, γt〉‖∞ ≤ ‖γt‖∞ + |〈ωt, γt〉| ≤ 2‖γt‖∞

since ωt ∈ 4m−1. We repeatedly apply this finding in conjunction with Jensen’s inequality to conclude

‖∑t
s=t−D ρs‖2∞ ≤ (D + 1)

∑t
s=t−D ‖ρs‖2∞ ≤ 4(D + 1)

∑t
s=t−D ‖γs‖2∞ and

‖ρt−D‖∞‖
∑t
s=t−D ρs‖∞ ≤ ‖ρt−D‖∞

∑t
s=t−D ‖ρs‖∞ ≤ 4‖γt−D‖∞

∑t
s=t−D ‖γs‖∞.

K. Examples: Learning to Hint with DORM+ and AdaHedgeD

By Thm. 12, AdaHedgeD satisfies Assump. 1 with ft(ht) = ‖rt‖∗‖ht −
∑t
s=t−D rs‖∗ ≥ a2

t,F+2αbt,F
diam(W)2+2α , C1(u) =√

diam(W)2 + 2α, and C0(u) = 2 diam(W) maxt∈[T ]

∑t−1
s=t−D ‖gs‖∗.
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By Cor. 9, DORM+ satisfies Assump. 1 with ft(h) = ‖rt−D + ht+1 − ht‖q‖h−
∑t
s=t−D rs‖q , C0(u) = 0, andC1(u) =√

‖u‖2p
2(p−1) .

These choices give rise to the hinting losses

lDORM+
t (ω) = ‖rt−D + ht+1 − ht‖q‖Htω −

∑t
s=t−D rs‖q and (12)

lAdaHedgeD
t (ω) = ‖gt‖q‖Htω −

∑t
s=t−D gs‖q when ‖·‖∗ = ‖·‖q for q ∈ [1,∞].

The following lemma, proved in App. K.1, identifies subgradients of these hinting losses.

Lemma 25 (Hinting loss subgradient). If lt(ω) = ‖ḡt‖q‖Htω − vt‖q for some ḡt,vt ∈ Rd and Ht ∈ Rd×m, then

γt =

{ ‖ḡt‖q
‖Htω−vt‖q−1

q
H>t |Htω − vt|q−1 sign(Htω − vt) if q <∞

‖ḡt‖∞ sign(µ)H>t ek if q =∞
∈ ∂lt(ω) (13)

for k = argmaxj∈[d](Htω − vt)j and µ = maxj∈[d](Htω − vt)j .

Our next lemma, proved in App. K.2, bounds the∞-norm of this hinting loss subgradient in terms of the base problem
subgradients.

Lemma 26 (Hinting loss subgradient bound). Under the assumptions and notation of Lem. 25, the subgradient γt satisfies
‖γt‖∞ ≤ d1/q‖ḡt‖q‖Ht‖∞ for ‖Ht‖∞ the maximum absolute entry of Ht.

K.1. Proof of Lem. 25: Hinting loss subgradient

The result follows immediately from the chain rule and the following lemma.

Lemma 27 (Subgradients of p-norms). Suppose w ∈ Rd and k ∈ argmaxj∈[d] |wj |. Then

∂‖w‖p 3


|w|p−1

‖w‖p−1
p

sign(w) if ‖w‖p 6= 0, p ∈ [1,∞)

ek sign(wk) if ‖w‖p 6= 0, p =∞
0 if ‖w‖p = 0

.

Proof. Since 0 is a minimizer of ‖·‖p, we have ‖u‖p ≥ ‖0‖p + 〈0,u− 0〉 for any u ∈ Rd and hence 0 ∈ ∂‖0‖p.

For p ∈ [1,∞), by the chain rule, if ‖w‖p 6= 0,

∂j‖w‖p = ∂j
(∑n

k=1 |wk|p
)1/p

= 1
p

(∑n
k=1 |wk|p

)(1/p)−1
p|wj |p−1 sign(wj)

=
((∑n

k=1 |wk|p
)1/p)−(p−1)

|wj |p−1 sign(wj)

=
(
|wj |
‖w‖p

)p−1

sign(wj).

For p =∞, we have that ‖w‖∞ = maxj∈[n] |wj |. By the Danskin-Bertsekas Theorem (Danskin, 2012) for subdifferentials,
∂‖w‖∞ = conv{∪∂|wj | s.t. |wj | = ‖w‖∞} = conv{∪ sign(wj)ej s.t. |wj | = ‖w‖∞}, where conv is the
convex hull operation.

K.2. Proof of Lem. 26: Hinting loss subgradient bound

If q ∈ [1,∞), we have

‖γt‖∞ =

∥∥∥∥ ‖ḡt‖q
‖Htω−

∑t
s=t−D gs‖q−1

q
H>t |Htω −

∑t
s=t−D gs|q−1 sign(Htω −

∑t
s=t−D gs)

∥∥∥∥
∞

≤ ‖ḡt‖q maxj∈[d] ‖Htej‖q
‖Htω−

∑t
s=t−D gs‖q−1

q
‖Htω −

∑t
s=t−D gs‖q−1

q by Hölder’s inequality for (q, p)

≤ d1/q‖ḡt‖q‖Ht‖∞ by Lem. 21.
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If q =∞, we have

‖γt‖∞ =
∥∥‖ḡt‖∞ sign(µ)H>t ek

∥∥
∞ = I[µ 6= 0]‖ḡt‖∞‖Ht‖∞ ≤ d1/q‖ḡt‖∞‖Ht‖∞.

L. Experiment Details
L.1. Subseasonal Forecasting Application

We apply the online learning techniques developed in this paper to the problem of adaptive ensembling for subseasonal
weather forecasting. Subseasonal forecasting is the problem predicting meteorological variables, often temperature and
precipitation, 2-6 weeks in advance. These mid-range forecasts are critical for managing water resources and mitigating
wildfires, droughts, floods, and other extreme weather events (Hwang et al., 2019). However, the subseasonal forecasting
task is notoriously difficult due to the joint influences of short-term initial conditions and long-term boundary conditions
(White et al., 2017).

To improve subseasonal weather forecasting capabilities, the US Department of Reclamation launched the Sub-Seasonal
Climate Forecast Rodeo competition (Nowak et al., 2020), a yearlong real-time forecasting competition for the Western
United States. Our experiments are based on Flaspohler et al. (2021), a snapshot of public subseasonal model forecasts
including both physics-based and machine learning models. These models were developed for the subseasonal forecasting
challenge and make semimonthly forecasts for the contest period (19 October 2019 – 29 September 2020).

To expand our evaluation beyond the subseasonal forecasting competition, we used the forecasts in Flaspohler et al. (2021)
for analogous yearlong periods (26 semi-monthly dates starting from the last Wednesday in October) beginning in Oct. 2010
and ending in Sep. 2020. Throughout, we refer to the yearlong period beginning in Oct. 2010 – Sep. 2011 as the 2011 year
and so on for each subsequent year. For each forecast date t, the models in Flaspohler et al. (2021) were trained only on data
available at time t and model hyper-parameters were tuned to optimize average RMSE loss on the 3-year period preceding
the forecast date t. For a few of the forecast dates, one or more models had missing forecasts; only dates for which all
models have forecasts were used in evaluation.

L.2. Problem Definition

Denote the set of d = 6 input models {M1, . . .Md} with labels: llr (Model1), multillr (Model2),
tuned catboost (Model3), tuned cfsv2 (Model4), tuned doy (Model5) and tuned salient fri (Model6).
On each semimonthly forecast date, each modelMi makes a prediction for each of two meteorological variables (cumulative
precipitation and average temperature over 14 days) and two forecasting horizons (3-4 weeks and 5-6 weeks). For the 3-4
week and 5-6 horizons respectively, the forecaster experiences a delay of D = 2 and D = 3 forecasts. Each model makes a
total of T = 26 semimonthly forecasts for these four tasks.

At each time t, each input modelMi produces a prediction at G = 514 gridpoints in the Western United States: xct,i ∈
RG =Mi(t) for task c at time t. Let Xc

t ∈ RG×d be the matrix containing each input model’s predictions as columns. The
true meterological outcome for task c is yct ∈ RG. As online learning is performed for each task separately, we drop the task
superscript c in the following.

At each timestep, the online learner makes a forecast prediction ŷt by playing wt ∈W = 4d−1, corresponding to a convex
combination of the individual models: ŷt = Xtwt. The learner then incurs a loss for the play wt according to the root
mean squared (RMSE) error over the geography of interest:

`t(wt) =
1√
G
‖yt −Xtwt‖2,

∂`t(wt) 3 gt =

{
X>t (Xtwt−yt)√
G‖Xtwt−yt‖2

if Xtwt − yt 6= 0

0 if Xtwt − yt = 0

Our objective for the subseasonal forecasting application is to produce an adaptive ensemble forecast that competes with the
best input model over the yearlong period. Hence, in our evaluation, we take the competitor set to be the set of individual
models U = {ei : i ∈ [d]}.
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M. Extended Experimental Results
We present complete experimental results for the four experiments presented in the main paper (see Sec. 7).

M.1. Competing with the Best Input Model

Results for our three delayed online learning algorithms — DORM, DORM+, and AdaHedgeD— on the four subseasonal
prediction tasks for the four optimism strategies described in Sec. 7 (recent g, prev g, mean g, none) are presented
below. Each table and figure shows the average RMSE loss and the annual regret versus the best input model in any given
year respectively for each algorithm and task.

DORM+ is a competitive model for all three hinting strategies and under the recent g hinting strategy achieves negative
regret on all tasks except Temp. 5-6w. For the Temp. 5-6w task, no online learning model outperforms the best input model
for any hinting strategy. For the precipitation tasks, the online learning algorithms presented achieve negative regret using
all three hinting strategies for all four tasks. Within the subseasonal forecasting domain, precipitation is often considered a
more challenging forecasting task than temperature (White et al., 2017). The gap between the best model and the worst
model tends to be larger for precipitation than for temperature, and this could in part explain the strength of the online
learning algorithms for these tasks.

Table 2: Hint recent g: Average RMSE of the 2011-2020 semimonthly forecasts for online learning algorithms (left) and input models
(right) over a 10-year evaluation period with the top-performing learners and input models bolded and blue. In each task, the online
learners compare favorably with the best input model and learn to downweight the lower-performing candidates, like the worst models
italicized in red.

RECENT G ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.726 21.731 21.675 21.973 22.431 22.357 21.978 21.986 23.344
PRECIP. 5-6W 21.868 21.957 21.838 22.030 22.570 22.383 22.004 21.993 23.257
TEMP. 3-4W 2.273 2.259 2.247 2.253 2.352 2.394 2.277 2.319 2.508
TEMP. 5-6W 2.316 2.316 2.303 2.270 2.368 2.459 2.278 2.317 2.569
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Figure 6: Hint recent g: Yearly cumulative regret under RMSE loss for the three delayed online learning algorithms presented, over
the 10-year evaluation period. The zero line corresponds to the performance of the best input model in a given year.
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Table 3: Hint prev g: Average RMSE of the 2010-2020 semimonthly forecasts for all four tasks over over a 10-year evaluation period.

PREV G ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.760 21.777 21.729 21.973 22.431 22.357 21.978 21.986 23.344
PRECIP. 5-6W 21.943 21.964 21.911 22.030 22.570 22.383 22.004 21.993 23.257
TEMP. 3-4W 2.266 2.269 2.250 2.253 2.352 2.394 2.277 2.319 2.508
TEMP. 5-6W 2.306 2.307 2.305 2.270 2.368 2.459 2.278 2.317 2.569
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Figure 7: Hint prev g: Yearly cumulative regret under RMSE loss for the three delayed online learning algorithms presented.

Table 4: Hint mean g: Average RMSE of the 2010-2020 semimonthly forecasts for all four tasks over over a 10-year evaluation period.

MEAN G ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.864 21.945 21.830 21.973 22.431 22.357 21.978 21.986 23.344
PRECIP. 5-6W 21.993 22.054 21.946 22.030 22.570 22.383 22.004 21.993 23.257
TEMP. 3-4W 2.273 2.277 2.257 2.253 2.352 2.394 2.277 2.319 2.508
TEMP. 5-6W 2.311 2.320 2.314 2.270 2.368 2.459 2.278 2.317 2.569
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Figure 8: Hint mean g: Yearly cumulative regret under RMSE loss for the three delayed online learning algorithms presented.

Table 5: Hint none: Average RMSE of the 2010-2020 semimonthly forecasts for all four tasks over over a 10-year evaluation period.

NONE ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.760 21.835 21.796 21.973 22.431 22.357 21.978 21.986 23.344
PRECIP. 5-6W 21.860 21.967 21.916 22.030 22.570 22.383 22.004 21.993 23.257
TEMP. 3-4W 2.266 2.272 2.258 2.253 2.352 2.394 2.277 2.319 2.508
TEMP. 5-6W 2.296 2.311 2.308 2.270 2.368 2.459 2.278 2.317 2.569
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Figure 9: Hint none: Yearly cumulative regret under RMSE loss for the three delayed online learning algorithms presented.
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M.2. Impact of Regularization

Results for three regularization strategies—AdaHedgeD, DORM+, and DUB—on all four subseasonal prediction as
described in Sec. 7. Fig. 10 shows the annual regret versus the best input model in any given year for each algorithm and
task, and Fig. 11 presents an example of the weights played by each algorithm in the final evaluation year, as well as the
regularization weight used by each algorithm.

The under- and over-regularization of AdaHedgeD and DUB respectively compared with DORM+ is evident in all four
tasks, both in the regret and weight plots. Due to the looseness of the regularization settings used in DUB, its plays can
be seen to be very close to the uniform ensemble in all four tasks. For this subseasonal prediction problem, the uniform
ensemble is competitive, especially for the 5-6 week horizons. However, in problems where the uniform ensemble has
higher regret, this over-regularization property of DUB would be undesirable. The more adaptive plays of DORM+ and
AdaHedgeD have the potential to better exploit heterogeneous performance among different input models.
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Figure 10: Overall regret: Yearly cumulative regret under the RMSE loss for the three regularization algorithms presented.
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Figure 11: Impact of regularization: The plays wt of online learning algorithms used to combine the input models for all four tasks in
the 2020 evaluation year. The weights of DUB and AdaHedgeD appear respectively over and under regularized compared to DORM+ due
to their selection of regularization strength λt (right).
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M.3. To Replicate or Not to Replicate

We compare the performance of replicated and non-replicated variants of our DORM+ algorithm as in Sec. 7. Both
algorithms perform well, but in all tasks, DORM+ outperforms replicated DORM+ (in which D + 1 independent copies of
DORM+ make staggered predictions). Fig. 12 provides an example of the weight plots produced by the replication strategy
for all for tasks.

The replicated algorithms only have the opportunity to learn from T/(D + 1) plays. For the 3-4 week horizons tasks D = 2
and for the 5-6 week horizons tasks D = 3. Because our forecasting horizons are short (T = 26), further limiting the
feedback available to each online learner via replication could be detrimental to practical model performance.

Table 6: Replication RMSE: Average RMSE of the 2010-2020 semimonthly forecasts for four tasks over over a 10-year evaluation
period for replicated versus standard DORM+.

DORM+ REPLICATED DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.675 21.720 21.973 22.431 22.357 21.978 21.986 23.344
PRECIP. 5-6W 21.838 21.851 22.030 22.570 22.383 22.004 21.993 23.257
TEMP. 3-4W 2.247 2.249 2.253 2.352 2.394 2.277 2.319 2.508
TEMP. 5-6W 2.303 2.315 2.270 2.368 2.459 2.278 2.317 2.569
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Figure 12: Replication weights: The plays wt of DORM+ and replicated DORM+ for all four tasks in the final evaluation year.
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M.4. Learning to Hint

We examine the effect of optimism on the DORM+ algorithms and the ability of our “learning to hint” strategy to recover
the performance of the best optimism strategy in retrospect as described in Sec. 7. We use DORM+ as the meta-algorithm
for hint learning to produce the learned optimism strategy that plays a convex combination of the three constant hinters.

As reported in the main text, the regret of the base algorithm using the learned hinting strategy generally falls between the
worst and the best hinting strategy for any given year. Because the best hinting strategy for any given year is unknown a
priori, the adaptivity of the hint learner is useful practically. Currently, the hint learner is only optimizing a loose upper
bound on base problem regret. Deriving loss functions for hint learning that more accurately quantify the effect of the hinter
on base model regret is an important next step in achieving negative regret for online hinting algorithms.
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Figure 13: Overall regret: Yearly cumulative regret under the RMSE loss for DORM+ using the three constant hinting strategies
presented and the learned hinter, over the 10-year evaluation period.

M.5. Impact of Different Forms of Optimism

The regret analysis presented in this work suggest that optimistic strategies under delay can benefit from hinting at both the
“past” gt−D:t−1 missing losses and the “future” unobserved loss gt. To study the impact of different forms of optimism on
DORM+, we provide a recent g hint for either only the missing future loss gt, only the missing past losses gt−D:t−1,
or both past and future losses (the strategy used in this paper) gt−D:t. Inspired by the recommendation of an anonymous
reviewer, we also test two hint settings that only hint at the future unobserved loss but multiply the weight of that hint by
2D+1 or 3D+1, effectively increasing the importance of the future hint in the online learning optimization. Fig. 14 presents
the experimental results.

In this experiment, all settings of optimism improve upon the non-optimistic algorithm, and, for all tasks, providing hints for
missing future losses outperforms hinting at missing past losses. For all tasks save Temp. 5-6w, hinting at both missing past
and future losses yields a further improvement. The 2D+1 and 3D+1 settings demonstrate that, for some tasks, increasing
the magnitude of the optimistic hint can further improve performance in line with the online gradient descent predictions of
Hsieh et al. (2020, Thm. 13).

N. Algorithmic Details
N.1. ODAFTRL with AdaHedgeD and DUB tuning

The AdaHedgeD and DUB algorithms presented in the experiments are implementations of ODAFTRL with a negative
entropy regularizer ψ(w) =

∑d
j=1 wj lnwj + ln d, which is 1-strongly convex with respect to the norm ‖·‖1 (Shalev-
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Figure 14: DORM+ average RMSE as in Table 1 as a function of optimism strategy; see App. M.5 for details.

Shwartz, 2007, Lemma 16) with dual norm ‖·‖∞. Each algorithm optimizes over the simplex and competes with the simplex:
W = U = 4d−1. We choose α = supu∈U ψ(u) = ln(d). In the following, define ψt , λtψ for λt ≥ 0. Our derivations
of the update equations for AdaHedgeD and DUB make use of the following properties of the negative entropy regularizer,
proved in App. N.4.

Lemma 28 (Negative entropy properties). The negative entropy regularizer ψ(w) =
∑d
j=1 wj lnwj + ln d with ψt = λtψ

for λt ≥ 0 satisfies the following properties on the simplex W = 4d−1.

ψ∗W(θ) , supw∈W〈w, θ〉 − ψ(w) = ln
(∑d

j=1 exp(θj)
)
− ln d,

(λψ)∗W(θ) , supw∈W〈w, θ〉 − λψ(w) =

{
λψ∗W(θ/λ) = λ ln(

∑d
j=1 exp(θj/λ))− λ ln d, if λ > 0

maxj∈[d] θj if λ = 0
,

w∗(θ, λ) ,


exp(θ/λ)∑d
j=1 exp(θj/λ)

if λ > 0

I[θ=maxj θj ]∑
k∈[d] I[θk=maxj θj ]

if λ = 0
∈ argminw∈W λψ(w)− 〈w, θ〉 ⊆ ∂(λψ)∗W(θ).

Our next corollary concerning optimal ODAFTRL objectives follows directly from Lem. 28.

Corollary 29 (Optimal ODAFTRL objectives). Instantiate the notation of Lem. 28, and define the functions Ft(w, λ) ,
λψ(w) + 〈g1:t−1,w〉 for w ∈W. Then

−(λψ)∗W(−(g1:t−1 + h)) = infw∈W Ft(w, λ) + 〈h,w〉 and

w∗(−(g1:t−1 + h), λ) = argminw∈W Ft(w, λ) + 〈h,w〉.

Using Lem. 28 and Cor. 29, we can derive an expression, proved in App. N.5, for the AdaHedgeD δt updates.

Proposition 30 (AdaHedgeD δt). Instantiate the notation of Thm. 12, and define the auxiliary hint vector

ĥt , gt−D:t + σt(ht − gt−D:t) for σt , min( ‖gt‖∗
‖ht−gt−D:t‖∗ , 1) (14)

along with the scalars

c∗ = maxj:wt,j 6=0 ht,j − gt−D:t,j and ĉ∗ = maxj:ŵt,j 6=0 ĥt,j − gt−D:t,j

for

w̄t = argminw∈W Ft+1(w, λt) = exp(−g1:t/λt)∑d
j=1 exp(−g1:t,j/λt)

and

ŵt = argminw∈W Ft+1(w, λt) + 〈ĥt − gt−D:t,w〉 = exp(−(g1:t−D−1+ĥt)/λt)∑d
j=1 exp(−(g1:t−D−1,j+ĥt,j)/λt)
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by Cor. 29. If λt > 0,

δt = min(δ
(1)
t , δ

(2)
t , δ

(3)
t )+ for

δ
(1)
t = Ft+1(wt, λt)− Ft+1(w̄t, λt)

= λt ln(
∑
j∈[d] wt,j exp((ht,j − gt−D:t,j)/λt)) + 〈gt−D:t − ht,wt〉

= λt ln(
∑
j∈[d] wt,j exp((ht,j − gt−D:t,j − c∗)/λt)) + 〈gt−D:t − ht,wt〉+ c∗,

δ
(2)
t = 〈gt,wt − w̄t〉, and

δ
(3)
t = Ft+1(ŵt, λt)− Ft+1(w̄t, λt) + 〈gt,wt − ŵt〉

= λt ln(
∑
j∈[d] ŵt,j exp((ĥt,j − gt−D:t,j)/λt)) + 〈gt−D:t − ĥt, ŵt〉+ 〈gt,wt − ŵt〉

= λt ln(
∑
j∈[d] ŵt,j exp((ĥt,j − gt−D:t,j − ĉ∗)/λt)) + 〈gt−D:t − ĥt, ŵt〉+ ĉ∗ + 〈gt,wt − ŵt〉.

If λt = 0,

δt = min(δ
(1)
t , δ

(2)
t , δ

(3)
t )+ for

δ
(1)
t = 〈g1:t,wt〉 −minj∈[d] g1:t,j ,

δ
(2)
t = 〈gt,wt − w̄t〉, and

δ
(3)
t = 〈g1:t, ŵt〉 −minj∈[d] g1:t,j + 〈gt,wt − ŵt〉.

Leveraging these results, we present the pseudocode for the AdaHedgeD and DUB instantiations of ODAFTRL in Algo-
rithm 1.

N.2. DORM and DORM+

The DORM and DORM+ algorithms presented in the experiments are implementations of ODAFTRL and DOOMD
respectively that play iterates in W , 4d−1 using the default value λ = 1. Both algorithms use a p-norm regularizer
ψ = 1

2‖·‖2p, which is 1-strongly convex with respect to ‖·‖ =
√
p− 1‖·‖p (see Shalev-Shwartz, 2007, Lemma 17) with

‖·‖∗ = 1√
p−1
‖·‖q . For the paper experiments, we choose the optimal value q = infq′≥2 d

2/q′(q′− 1) to obtain ln(d) scaling
in the algorithm regret; for d = 6, p = q = 2. The update equations for each algorithm are given in the main text by DORM
and DORM+ respectively. The optimistic hinters provide delayed gradient hints g̃t, which are then used to compute regret
gradient hints r̃t, where r̃t = 〈g̃t,wt〉 − g̃t and ht =

∑t−1
s=t−D r̃s + 〈g̃t,wt−1〉 − g̃t.

N.3. Adaptive Hinting

For the adaptive hinting experiments, we use the DORM+ as both the base and hint learner. For the hint learner with DORM
base algorithm, the hint loss function is given by (12) with q = 2. The plays of the online hinter ωt are used to generate the
hints ht for the base algorithm using the hint matrix Ht ∈ Rd×m. The j-th column of Ht contains hinter j’s predictions for
the cumulative missing regret subgradients rt−D:t. The final hint for the base learner is ht = Htωt. Psuedo-code for the
adaptive hinter is given in Algorithm 2.

N.4. Proof of Lem. 28: Negative entropy properties

The expression of the Fenchel conjugate for λ > 0 is derived by solving an appropriate constrained convex optimization
problem for w = 4d−1, as shown in Orabona (2019, Section 6.6). The value of w∗(θ, λ) ∈ ∂(λψ)∗W(θ) uses the properties
of the Fenchel conjugate (Rockafellar, 1970; Orabona, 2019, Theorem 5.5) and is shown in Orabona (2019, Theorem 6.6).
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Algorithm 1 ODAFTRL with W = 4d−1, ψ(w) =
∑d
j=1 wj lnwj + ln(d), delay D ≥ 0, and tuning strategy tuning

1: Parameter α = supu∈4d−1
ψ(u) = ln(d)

2: Initial regularization weight: λ0 = 0
3: if tuning is DUB then
4: Initial regularization sum: ∆0 = 0
5: Initial maximum: amax = 0
6: end if
7: Initial subgradient sum: g1:1 = 0 ∈ Rd
8: Dummy losses and iterates: g−D = · · · = g0 = 0 ∈ Rd, w−D = · · · = w0 = 0 ∈ Rd
9: for t = 1, . . . , T do

10: Receive hint ht ∈ Rd
11: Output wt = argminw∈W Ft−D(w, λt) + 〈ht,w〉 as in Cor. 29
12: Receive gt−D ∈ Rd and pay 〈gt−D,wt−D〉
13: Update subgradient sum g1:t−D = g1:t−D−1 + gt−D
14: if tuning is AdaHedgeD then
15: Compute the auxiliary play w̄t−D = argminw∈W Ft−D+1(w, λt−D) as in Cor. 29
16: Compute the auxiliary regret term δ

(1)
t−D = Ft−D+1(wt−D, λt−D)− Ft−D+1(w̄t−D, λt−D) as in Prop. 30

17: Compute the drift term δ
(2)
t−D = 〈gt−D,wt−D − w̄t−D〉

18: Compute the auxiliary hint (14) ĥt−D , gt−2D:t−D + min( ‖gt−D‖∗
‖ht−D−gt−2D:t−D‖∗ , 1)(ht−D − gt−2D:t−D)

19: Compute the auxiliary play ŵt−D = argminw∈W Ft−D+1(w, λt−D) + 〈ĥt−D − gt−2D:t−D,w〉 as in Cor. 29
20: Compute the regret term δ

(3)
t−D = Ft−D+1(ŵt−D, λt−D)− Ft−D+1(w̄t−D, λt−D) + 〈gt−D,wt−D − ŵt−D〉 as

in Prop. 30
21: Update λt+1 = λt + 1

α min(δ
(1)
t−D, δ

(2)
t−D, δ

(3)
t−D)+ as in (3)

22: else if tuning is DUB then
23: Compute at−D,F = 2 min

(
‖gt−D‖∞, ‖ht−D −

∑t−D
s=t−2D gs‖∞

)
as in (2)

24: Compute bt−D,F = 1
2‖ht−D −

∑t−D
s=t−2D gs‖2∞ − 1

2 (‖ht−D −
∑t−D
s=t−2D gs‖∞ − ‖gt−D‖∞)2

+ as in (2)
25: Update ∆t+1 = ∆t + a2

t−D,F + 2αbt−D,F
26: Update maximum amax = max(amax,at−2D:t−D−1,F )
27: Update λt+1 = 1

α (2amax +
√

∆t+1) as in DUB
28: end if
29: end for

N.5. Proof of Prop. 30: AdaHedgeD δt

First suppose λt > 0. The first term in the min of AdaHedgeD’s δt setting is derived as follows:

δ
(1)
t , Ft+1(wt, λt)− Ft+1(w̄t, λt) by definition (3)

= Ft−D(wt, λt) + 〈ht,wt〉+ 〈gt−D:t − ht,wt〉 − infw∈W Ft+1(w, λt) by definition of w̄t

= Ft−D(wt, λt) + 〈ht,wt〉+ 〈gt−D:t − ht,wt〉+ λtψ
∗
W(−g1:t/λt) by Cor. 29

= λtψ
∗
W(−g1:t/λt)− λtψ∗W((−ht − g1:t−D−1)/λt) + 〈gt−D:t − ht,wt〉

because wt ∈ argminw∈W Ft−D(wt, λt) + 〈ht,wt〉
= λt(ln(

∑d
j=1 exp(−g1:t,j/λt))− λt(ln(

∑d
j=1 exp((−g1:t−D−1,j − ht,j)/λt)) + 〈gt−D:t − ht,wt〉 by Lem. 28

= λt ln

(∑d
j=1

exp(−g1:t,j/λt)∑d
j=1 exp((−g1:t−D−1,j−ht,j)/λt)

)
+ 〈gt−D:t − ht,wt〉

= λt ln

(∑d
j=1

exp((−g1:t−D−1,j−ht,j)/λt) exp((ht,j−gt−D:t,j)/λt)∑d
j=1 exp((−g1:t−D−1,j−ht,j)/λt)

)
+ 〈gt−D:t − ht,wt〉

= λt ln
(∑d

j=1 wt,j exp((ht,j − gt−D:t,j)/λt)
)

+ 〈gt−D:t − ht,wt〉 by the expression for wt in Cor. 29.

The expression for the third term in the min of AdaHedgeD’s δt setting follows from identical reasoning.
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Algorithm 2 Learning to hint with DORM+ (q=2) hint learner, DORM+ base learner, and delay D ≥ 0

1: Subgradient vector: g−D, · · ·g0 = 0 ∈ Rd
2: Meta-subgradient vector: γ−D, · · · γ0 = 0 ∈ Rm
3: Initial instantaneous regret: r−D = 0 ∈ Rd
4: Initial instantaneous meta-regret: ρ−D = 0 ∈ Rm
5: Initial hint h0 = 0 ∈ Rd
6: Initial orthant meta-vector: ω̃0 = 0 ∈ Rm
7: for t = 1, . . . , T do
8: // Update online hinter using DORM+ with q = 2
9: Find optimal unnormalized hint combination vector ω̃t = max(0, ω̃t−1 + ρt−D−1)

10: Normalize: ωt =

{
1/m if ω̃t = 0

ω̃t/〈1, ω̃t〉 otherwise

11: Receive hint matrix: Ht ∈ Rd×m in which each column is a hint for
∑t
s=t−D rs

12: Output hint ht = Htωt
13: // Update DORM+ base learner and get next play
14: Output wt = DORM+(gt−D−1,ht)
15: Receive gt−D ∈ Rd and pay 〈gt−D,wt−D〉
16: Compute instantaneous regret rt−D = 1〈gt−D,wt−D〉 − gt−D
17: Compute hint meta-subgradient γt−D ∈ ∂lt−D(ωt−D) ∈ Rm as in (13)
18: Compute instantaneous hint regret ρt−D = 1〈γt−D, ωt−D〉 − γt−D
19: end for

Now suppose λt = 0. We have

δ
(1)
t , Ft+1(wt, λt)− Ft+1(w̄t, λt) by definition (3)

= 〈g1:t,wt〉 − infw∈W Ft+1(w, λt) by definition of w̄t

= 〈g1:t,wt〉 −minj∈[d] g1:t,j by Cor. 29.

Identical reasoning yields the advertised expression for the third term.

O. Extension to Variable and Unbounded Delays
In this section we detail how our main results generalize to the case of variable and potentially unbounded delays. For each
time t, we define last(t) as the largest index s for which g1:s is observable at time t (that is, available for constructing wt)
and first(t) as the first time s at which g1:t is observable at time s (that is, available for constructing ws).

O.1. Regret of DOOMD with variable delays

Consider the DOOMD variable-delay generalization

wt+1 = argmin
w∈W

〈glast(t)+1:last(t+1) + ht+1 − ht,w〉+ Bλψ(w,wt) with h0 , 0 and arbitrary w0.

(DOOMD with variable delays)

We first note that DOOMD with variable delays is an instance of SOOMD respectively with a “bad” choice of optimistic
hint g̃t+1 that deletes the unobserved loss subgradients glast(t+1)+1:t.

Lemma 31 (DOOMD with variable delays is SOOMD with a bad hint). DOOMD with variable delays is SOOMD with
g̃t+1 = g̃t + glast(t)+1:last(t+1) − gt + ht+1 − ht = ht+1 +

∑t
s=1 glast(s)+1:last(s+1) − gs. = ht+1 − glast(t+1)+1:t.

The following result now follows immediately from Thm. 4 and Lem. 31.

Theorem 32 (Regret of DOOMD with variable delays). If ψ is differentiable and hT+1 , glast(T+1)+1:T , then, for all
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u ∈W, the DOOMD with variable delays iterates wt satisfy

RegretT (u) ≤ Bλψ(u,w0) + 1
λ

∑T
t=1 b

2
t,O, for

b2
t,O , huber(‖ht −

∑t
s=last(t)+1 gs‖∗, ‖glast(t)+1:last(t+1) + ht+1 − ht‖∗).

O.2. Regret of ODAFTRL with variable delays

Consider the ODAFTRL variable-delay generalization

wt+1 = argmin
w∈W

〈g1:last(t+1) + ht+1,w〉+ λt+1ψ(w). (ODAFTRL with variable delays)

Since ODAFTRL with variable delays is an instance of OAFTRL with g̃t+1 = ht+1 −
∑t
s=last(t+1)+1 gs, the following

result follows immediately from the OAFTRL regret bound, Thm. 14.

Theorem 33 (Regret of ODAFTRL with variable delays). If ψ is nonnegative and λt is non-decreasing in t, then, ∀u ∈W,
the ODAFTRL with variable delays iterates wt satisfy

RegretT (u) ≤ λTψ(u) +
∑T
t=1 min(

bt,F
λt

,at,F ) with

bt,F , huber(‖ht −
∑t
s=last(t)+1 gs‖∗, ‖gt‖∗) and (15)

at,F , diam(W) min
(
‖ht −

∑t
s=last(t)+1 gs‖, ‖gt‖∗

)
.

O.3. Regret of DUB with variable delays

Consider the DUB variable-delay generalization

αλt+1 = 2 max
j≤last(t+1)−1

alast(j+1)+1:j,F +
√∑last(t+1)

i=1 a2
i,F + 2αbi,F . (DUB with variable delays)

Theorem 34 (Regret of DUB with variable delays). Fix α > 0, and, for at,F ,bt,F as in (15), consider the DUB with
variable delays sequence. If ψ is nonnegative, then, for all u ∈W, the ODAFTRL with variable delays iterates wt satisfy

RegretT (u) ≤
(ψ(u)

α + 1
)

(
2 maxt∈[T ] alast(t)+1:t−1,F +

√∑T
t=1 a

2
t,F + 2αbt,F

)
Proof. Fix any u ∈W. By Thm. 33, ODAFTRL with variable delays admits the regret bound

RegretT (u) ≤ λTψ(u) +
∑T
t=1 min( 1

λt
bt,F ,at,F ).

To control the second term in this bound, we apply the following lemma proved in App. H.1.

Lemma 35 (DUB with variable delays-style tuning bound). Fix any α > 0 and any non-negative sequences (at)
T
t=1,

(bt)
T
t=1. If (λt)t≥1 is non-decreasing and

∆∗t+1 , 2 maxj≤last(t+1)−1 alast(j+1)+1:j +

√∑last(t+1)
i=1 a2

i + 2αbi ≤ αλt+1 for each t

then ∑T
t=1 min(bt/λt, at) ≤ ∆∗first(T ) ≤ αλfirst(T ).

Since T ≤ first(T ), λT ≤ λfirst(T ), and last(first(T )) = T , the result now follows by setting at = at,F and bt = bt,F , so
that

RegretT (u) ≤ λTψ(u) + αλfirst(T ) ≤ (ψ(u) + α)λfirst(T ).
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O.4. Proof of Lem. 35: DUB with variable delays-style tuning bound

We prove the claim

∆t ,
∑t
i=1 min(bi/λi, ai) ≤ ∆∗first(t) ≤ αλfirst(t)

by induction on t.

Base case For t = 1, since last(first(t)) ≥ t, we have

∑t
i=1 min(bi/λi, ai) ≤ a1 ≤ 2 maxj≤t−1 alast(j+1)+1:j +

√∑t
i=1 a

2
i + 2αbi

≤ 2 maxj≤last(first(t))−1 alast(j+1)+1:j +

√∑last(first(t))
i=1 a2

i + 2αbi = ∆∗first(t) ≤ αλfirst(t)

confirming the base case.

Inductive step Now fix any t+ 1 ≥ 2 and suppose that

∆i ≤ ∆∗first(i) ≤ αλfirst(i)

for all 1 ≤ i ≤ t. Since first(last(i+ 1)) ≤ i+ 1 and λs is non-decreasing in s, we apply this inductive hypothesis to deduce
that, for each 0 ≤ i ≤ t,

∆2
i+1 −∆2

i = (∆i + min(bi+1/λi+1, ai+1))
2 −∆2

i = 2∆i min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)2

= 2∆last(i+1) min(bi+1/λi+1, ai+1) + 2(∆i −∆last(i+1)) min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)2

= 2∆last(i+1) min(bi+1/λi+1, ai+1) + 2

i∑
j=last(i+1)+1

min(bj/λj , aj) min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)2

≤ 2αλfirst(last(i+1)) min(bi+1/λi+1, ai+1) + 2alast(i+1)+1:i min(bi+1/λi+1, ai+1) + a2
i+1

≤ 2αλi+1 min(bi+1/λi+1, ai+1) + 2alast(i+1)+1:i min(bi+1/λi+1, ai+1) + a2
i+1

≤ 2αbi+1 + a2
i+1 + 2alast(i+1)+1:i min(bi+1/λi+1, ai+1).

Now, we sum this inequality over i = 0, . . . , t, to obtain

∆2
t+1 ≤

∑t
i=0(2αbi+1 + a2

i+1) + 2
∑t
i=0 alast(i+1)+1:i min(bi+1/λi+1, ai+1)

=
∑t+1
i=1(2αbi + a2

i ) + 2
∑t+1
i=1 alast(i+1):i−1 min(bi/λi, ai)

≤∑t+1
i=1(a2

i + 2αbi) + 2 maxj≤t alast(j+1)+1:j

∑t+1
i=1 min(bi/λi, ai)

=
∑t+1
i=1(a2

i + 2αbi) + 2∆t+1 maxj≤t alast(j+1)+1:j .

We now solve this quadratic inequality, apply the triangle inequality, and invoke the relation last(first(t+ 1)) ≥ t+ 1 to
conclude that

∆t+1 ≤ maxj≤t alast(j+1)+1:j + 1
2

√
(2 maxj≤t alast(j+1)+1:j)2 + 4

∑t+1
i=1 a

2
i + 2αbi

≤ 2 maxj≤t alast(j+1)+1:j +
√∑t+1

i=1 a
2
i + 2αbi

≤ 2 maxj≤last(first(t+1))−1 alast(j+1)+1:j +

√∑last(first(t+1))
i=1 a2

i + 2αbi = ∆∗first(t+1) ≤ αλfirst(t+1).

O.5. Regret of AdaHedgeD with variable delays

Consider the AdaHedgeD variable-delay generalization

λt+1 = 1
α

∑last(t+1)
s=1 δs for δt defined in (3). (AdaHedgeD with variable delays)
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Theorem 36 (Regret of AdaHedgeD with variable delays). Fix α > 0, and consider the AdaHedgeD with variable delays
sequence. If ψ is nonnegative, then, for all u ∈W, the ODAFTRL with variable delays iterates satisfy

RegretT (u) ≤
(ψ(u)

α + 1
)

(
2 maxt∈[T ] alast(t+1)+1:t,F +

√∑T
t=1 a

2
t,F + 2αbt,F

)
.

Proof. Fix any u ∈W, and for each t, define λ′t+1 = 1
α

∑t
s=1 δs so that α(λ′t+1 − λ′t) = δt. Since the AdaHedgeD with

variable delays regularization sequence (λt)t≥1 is non-decreasing, last(T ) ≤ T , and hence λT ≤ λ′T+1, Thm. 14 gives the
regret bound

RegretT (u) ≤ λTψ(u) +
∑T
t=1 δt ≤ λTψ(u) + αλ′T+1 ≤ (ψ(u) + α)λ′T+1

and the proof of Thm. 14 gives the upper estimate (5):

δt ≤ min
(

bt,F
λt

,at,F

)
for all t ∈ [T ]. (16)

Hence, it remains to bound λ′T+1. We have

αλ′T+1
2

=
∑T
t=1 α(λ′t+1

2 − λ′t2) =
∑T
t=1

(
α(λ′t+1 − λ′t)2 + 2α(λ′t+1 − λ′t)λ′t

)
=
∑T
t=1

(
δ2
t /α+ 2δtλ

′
t

)
by the definition of λ′t+1

=
∑T
t=1

(
δ2
t /α+ 2δtλt + 2δt(λ

′
t − λt)

)
≤∑T

t=1

(
δ2
t /α+ 2δtλt + 2δt maxt∈[T ](λ

′
t − λt)

)
=
∑T
t=1

(
δ2
t /α+ 2δtλt

)
+ 2αλ′T+1 maxt∈[T ](λ

′
t − λt)

=
∑T
t=1

(
δ2
t /α+ 2δtλt

)
+ 2λ′T+1 maxt∈[T ] δlast(t+1)+1:t

≤∑T
t=1

(
a2
t,F /α+ 2bt,F

)
+ 2λ′T+1 maxt∈[T ] alast(t+1)+1:t,F by (16).

Solving the above quadratic inequality for λ′T+1 and applying the triangle inequality, we find

αλ′T+1 ≤ maxt∈[T ] alast(t+1)+1:t,F + 1
2

√
4(maxt∈[T ] alast(t+1)+1:t,F )2 + 4

∑T
t=1 a

2
t,F + 2αbt,F

≤ 2 maxt∈[T ] alast(t+1)+1:t,F +
√∑T

t=1 a
2
t,F + 2αbt,F .
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