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We want the bounds 𝝉+ 𝒙 , 𝝉− 𝒙  on the CATE function:

𝜏 𝑥 = 𝔼[𝑌 1 − 𝑌 0 ∣ 𝑋 = 𝑥]

Sensitivity Analysis
Assumption: Marginal Sensitivity Model (MSM).
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where 𝑒 𝑥 = 𝑃 𝐴 = 1 𝑋 = 𝑥  

             𝑒 𝑥, 𝑢 = 𝑃(𝐴 = 1 ∣ 𝑋 = 𝑥, 𝑈 = 𝑢) 

Example of CATE bounds under different values of Λ.

Bound Estimates Should Be…
• Valid: Ƹ𝜏 𝑥 ≥ 𝜏 𝑥 + 𝑜𝑃(1).

• Sharp: Ƹ𝜏 𝑥 = 𝜏 𝑥 + 𝑜𝑃(1).

• Efficient and Robust: Bounds should 

converge at desirable rates and have 

multiple chances at sharp or valid limits. 

  Previous works do not achieve all! Example of sharp and valid bounds for CATE estimates.

Identification of CATE Bounds
Result 1 (Dorn et al., 2021). 𝜇 𝑥, 𝑎 = 𝔼[𝑌 ∣ 𝑋 = 𝑥, 𝐴 = 𝑎] 
and 𝑌± 𝑥, 𝑎  is the upper (+) / lower (-) sharp bound of 

𝔼[𝑌(𝑎) ∣ 𝑋 = 𝑥] (not identifiable). Then:

𝒀+ 𝒙, 𝟏 = 𝑒 𝑥 𝜇 𝑥, 1 + 1 − 𝑒 𝑥 𝜌+ 𝑥, 1

𝒀− 𝒙, 𝟎 = 1 − 𝑒 𝑥 𝜇 𝑥, 0 + 𝑒 𝑥 𝜌− 𝑥, 0

 𝝉+ 𝒙 =  𝒀+ 𝒙, 𝟏  - 𝒀− 𝒙, 𝟎

where 𝜌± 𝑥, 𝑎 = Λ−1𝜇 𝑥, 𝑎 + 1 − Λ−1 𝐶𝑉𝑎𝑅±(𝑥, 𝑎).
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Estimation of CATE Bounds
Naïve “Plug-in” Estimator

Estimate 𝑒 x , 𝜇 𝑥, 𝑎 , 𝜌±(𝑥, 𝑎) and “plug” them into 𝑌± 𝑥, 𝑎  to obtain: 

ො𝝉𝐏𝐥𝐮𝐠𝐢𝐧
+ 𝒙 =  𝑌+ 𝑥, 1  - 𝑌− 𝑥, 0

• Inherits bias from the estimated nuisances Ƹ𝑒 𝑥 , Ƹ𝜇 𝑥, 𝑎 , ො𝜌±(𝑥, 𝑎).

• Especially biased when the nuisances are more complex than the CATE bounds.

• Does not yield efficient or robust bounds! 

B-Learner

1. Estimate nuisance set Ƹ𝜂 = ( Ƹ𝑒 𝑥 , ො𝑞± 𝑥, 𝑎 , ො𝜌± 𝑥, 𝑎 ) in one sample.

2. Get pseudo-outcomes based on the efficient influence function (EIF): 

𝒀+ 𝒙, 𝟏  →  𝝓𝟏
+ 𝒁, ෝ𝜼 = 𝐴𝑌 + 1 − 𝐴 ො𝜌+ 𝑋, 1 +

1− Ƹ𝑒 𝑋 𝐴

Ƹ𝑒 𝑋
𝑅+ 𝑍, ො𝑞+(𝑋, 1) − ො𝜌+(𝑋, 1)

𝒀− 𝒙, 𝟎  →  𝝓𝟎
− 𝒁, ෝ𝜼 = 1 − 𝐴 𝑌 + 𝐴 ො𝜌− 𝑋, 0 + Ƹ𝑒(𝑋)(1−𝐴)

1− Ƹ𝑒(𝑋)
𝑅− 𝑍, ො𝑞−(𝑋, 0) − ො𝜌−(𝑋, 0)

     𝝉+ 𝒙  → 𝝓𝝉
+ 𝒁, ෝ𝜼 = 𝝓𝟏

+ 𝒁, ෝ𝜼  - 𝝓𝟎
− 𝒁, ෝ𝜼

where 𝔼[𝑅± 𝑍, 𝑞± ∣ 𝑋 = 𝑥, 𝐴 = 𝑎] = 𝜌± 𝑥, 𝑎 .

3. Regress pseudo-outcome 𝝓𝝉
+ 𝒁, ෝ𝜼  on features 𝑋 ∈ 𝒳 in another sample.

The B-Learner algorithm with K-fold sample splitting.  

Theoretical Guarantees
• 𝐋𝟐 validity, sharpness and robustness guarantees for ERM second stage estimator 𝔼𝑛:

1. L2 bias on the order of ℰ = Ƹ𝑒 − 𝑒 ො𝜌 − 𝜌 + ො𝑞 − 𝑞 2.

2. If ො𝑞 and either Ƹ𝑒 or ො𝜌 are consistent, the bounds are sharp on average.

3. If ො𝑞 is inconsistent, the bounds are still valid in expectation.

4. The B-Learner has quasi-oracle efficiency, i.e. the bounds can be learned at a 

rate dominated by the complexity of the target class. 

• Pointwise validity, sharpness and robustness guarantees for linear smoother second 

stage estimator 𝔼𝑛.

Experiments
Simulations

𝐴 ∼ Bernoulli logit(0.75𝑋0 + 0.5)

𝑌 ∼ 𝒩( 2𝐴 − 1 𝑋0 + 1 − 2 sin 4𝐴 − 2 𝑋0 , 1)

IHDP Hidden Confounding

Quasi-oracle property of the B-Learner algorithm. 𝑛 is the sample size. 

In Ƹ𝜏+(𝑥, 𝑦), 𝑥 and 𝑦 are the types of first- and second-stage nuisances.

Performance of the B-Learner compared with the Sensitivity Kernel 

(Kallus et al. 2019) and Quince (Jesson et al., 2021). GK=Gaussain Kernel, 

NN=Neural Network, RF=Random Forest.

Error recommendation rate for different values of the percentage of 

deferred points. The x-axis represents different levels of practitioner 

caution by varying the percentage of recommendations deferred.
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