

Motivation

CDTEs

Mean (CATE)

Quantile (CQTE)

• Binary treatment $A \in \{0, 1\}$, covariates $X \in \mathcal{X}$,

• Skewed outcome functions (e.g., income, platform

Potential outcomes with the same conditional mean but different tail effects.

Conditional Distributional Treatment Effects (CDTEs)

Need to look beyond the conditional mean effect:

 $CDTE(X) = \kappa^*(F_{Y(1)|X}) - \kappa^*(F_{Y(0)|X})$

Example of statistics and corresponding CDTEs:

Superguantile, i.e., tail average (CSQTE)

entropic-value-at-risk, or EVaR (CfRTE)

• *f*-risk measures based on *f*-divergences, e.g.

Quantil

2.0 2.5

Different distribution statistics (quantile, superquantile, EVaR) at level 0.75

Superguantil FV/aR

where $\kappa^*(F)$ is any distribution statistic.

Y(0) | X =

Y(1) | X = x

• Data: $Z_i = (X_i, A_i, Y_i) \sim Z = (X, A, Y(A))$

• Overlap: $e^*(X) = \mathbb{P}(A = 1 \mid X) e^*(X) \in (0, 1)$

potential outcomes $Y(0), Y(1) \in \mathbb{R}$

Ignorability: $Y(a) \perp A \mid X$

usage) and risk quantification

Setup

Robust and Agnostic Learning of Conditional Distributional Treatment Effects

Nathan Kallus, Miruna Oprescu

CDTE Estimation Algorithm

General Framework: Moment Statistics

• Consider statistics that solve moment equations:

 $\mathbb{E}_{F}[\rho(Y,\kappa,h)] = 0$

where $h^*(F)$ is a set of nuisances.

Plugin Estimator

$$\text{CDTE}^{\text{Plugin}}(X) = \widehat{\kappa}_1(X) - \widehat{\kappa}_0(X)$$

where $\hat{\kappa}_a(\cdot)$ are estimates for $\kappa_a(\cdot)$.

- Inherits bias from the nuisances $\widehat{\kappa}_a(\cdot)$.
- Can wash out the signal when the nuisances are more complex than the CDTE.

Pseudo-outcome Regression Estimator

- 1. Estimate the nuisances $\nu_a^* = (\kappa_a^*, h_a^*)$.
- 2. Get pseudo-outcome derived from the efficient influence function (EIF):

$$\psi(Z, e, \alpha, \nu) = \kappa_1(X) - \kappa_0(X) - \frac{A - e(X)}{e(X)(1 - e(X))} \alpha_A(X)^T \rho(Y, \nu_A(X))$$

where $\alpha_A(X)$ are additional nuisances to estimate.

3. Regress pseudo-outcome on covariates $X \in \mathcal{X}$.

Algorithm 1 CDTE Learner

Input: Data $\{(X_i, A_i, Y_i) : i \in \overline{1, n}\}$, folds $K \ge 2$, nuisance estimators, regression learner

1: for $k \in \overline{1, K}$ do

2: Use data
$$\{(X_i, A_i, Y_i) : i \neq k - 1 \pmod{K}\}$$
 to

- construct nuisance estimates $\hat{e}^{(k)}, \hat{\alpha}^{(k)}, \hat{\nu}^{(k)}$ 3:
- 4: for $i = k - 1 \pmod{K}$ do

5: Set
$$\widehat{\psi}_i = \psi(Z_i, \widehat{e}^{(k)}, \widehat{\alpha}^{(k)}, \widehat{\nu}^{(k)})$$

6. end for

7: end for

8: return
$$\widehat{\text{CDTE}}(x) = \widehat{\mathbb{E}}_n[\widehat{\psi} \mid X = x]$$

Paper

Code

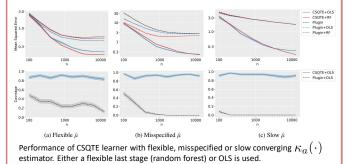
Learning and Inference Guarantees

Robustness:

- The error has a product structure so small errors in the nuisances lead to second-order errors in the CDTF estimates.
- E.g., if nuisances are estimated at a rate of at least $O(n^{-1/4})$, CDTEs are estimated at the rate $O(n^{-1/2})$
- There are many chances at consistency when some of the nuisances are misspecified.

Model Agnostic:

• Linear regression parameters are asymptotically normal with oracle variance (i.e., if we use OLS as the final stage, the confidence intervals are valid)



Case Study: Effect of 401k Eligibility

- Effect of 401k eligibility on net worth
- CSQTE on bottom and top 25% asset holders

1e-4					200.00000000000000000000000000000000000
1.25 -	CSQTE, bottom 25%	Coefficient	CSQTE Bottom 25%	CATE	CSQTE Top 25%
1.00	CSQTE, top 25%	Intercept	-0.021	-0.95	-2.07
0.75		(\$10,000)	(-1.06, 1.02)	(-2.42, 0.51)	(-7.04, 2.90)
0.50-	R.	Income	0.25^{**} (0.08, 0.43)	0.21 (-0.08, 0.50)	-0.05 (-1.12, 1.01)
0.25 -		Age	105 (-75, 286)	232^{**} (24, 441)	$513 \\ (-182, 1210)$
0.00 -	0 25000 50000	Education	-801^{**} (-1440, -164)	$ \begin{array}{c} 16 \\ (-1050, 1090) \end{array} $	$1340 \\ (-2490, 5180)$
	Effect				

Left: distribution of CATEs and CSQTEs with random forest last stage. Right: linear regression coefficients with OLS final stage.