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Abstract

Accurately predicting conditional average treatment effects (CATEs) is crucial
in personalized medicine and digital platform analytics. Since the treatments of
interest often cannot be directly randomized, observational data is leveraged to learn
CATEs, but this approach can incur significant bias from unobserved confounding.
One strategy to overcome these limitations is to leverage instrumental variables
(IVs) as latent quasi-experiments, such as randomized intent-to-treat assignments
or randomized product recommendations. This approach, on the other hand, can
suffer from low compliance, i.e., IV weakness. Some subgroups may even exhibit
zero compliance, meaning we cannot instrument for their CATEs at all. In this
paper, we develop a novel approach to combine IV and observational data to
enable reliable CATE estimation in the presence of unobserved confounding in the
observational data and low compliance in the IV data, including no compliance for
some subgroups. We propose a two-stage framework that first learns biased CATEs
from the observational data, and then applies a compliance-weighted correction
using IV data, effectively leveraging IV strength variability across covariates. We
characterize the convergence rates of our method and validate its effectiveness
through a simulation study. Additionally, we demonstrate its utility with real data
by analyzing the heterogeneous effects of 401(k) plan participation on wealth.

1 Introduction

The use of observational data for individual-level causal analyses is becoming increasingly common
in personalized medicine, online platforms, and any setting where understanding individualized
responses is crucial and/or presents an opportunity for personalization. The key quantity for such
analyses is the conditional average treatment effect (CATE), which captures how treatment effects vary
according to baseline covariates (features). This measure provides insight into effect heterogeneity
and enables personalization.

Using observational data can nonetheless introduce bias from unobserved confounding, where the
observed relationship between outcomes and interventions is influenced not only by treatment effects
but also by variables that influence both outcome and treatment, such as socioeconomic status, health,
user mood, etc., which are not captured by baseline covariates. These biases can skew causal effect
estimates, resulting in unreliable analyses or even harmful policy decisions.

Randomized trials are the gold standard for causal inference, but they are often infeasible. For
instance, digital services cannot force users to view or buy a product, and clinical trials cannot require
invasive treatments. A common alternative is to randomize the encouragement of certain actions,
such as recommending a product or treatment. These encouragements can serve as instrumental
variables (IVs) which, under certain conditions, enable unbiased estimation of treatment effects [4].

Identification of CATEs using IVs crucially hinges on the premise that compliance – the correlation
between the treatment received and the intent/encouragement – is nonzero across all baseline-covariate
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values. When compliance is nonzero but small, IV-based estimates tend to exhibit high variance,
making them unreliable [3]. In practice, the assumption of strong compliance is often violated. For
example, users on digital platforms may ignore recommendations entirely or reject certain types of
content, while participants on mobile health platforms may disregard prompts (e.g. taking 250 steps
per hour) due to time constraints or lack of interest.

To address the challenge of estimating unbiased CATEs in the presence of unobserved confounding
and low IV compliance, we introduce a two-stage framework. In the first stage, we estimate a biased,
confounded CATE from observational data. Then, in the second stage, we utilize an IV to learn
the confounding bias by weighting the samples according to their compliance levels. By assuming
only that the bias can be extrapolated, this approach extends treatment effect adjustments even to
groups minimally influenced by the IV, employing a transfer learning approach that leverages varying
instrument strengths across covariate groups.

This framework mirrors strategies in causal inference that combine randomized trials with obser-
vational data to address low covariate overlap. Building on this body of work, we introduce two
methodologies for extrapolating confounding bias within the observational dataset: a parametric
estimation approach, assuming the confounding bias adheres to a parametric form, and a trans-
fer learning strategy that assumes a shared representation between the true and biased CATE. We
study the properties of our CATE estimators in finite samples and validate our approaches through
comprehensive empirical studies.

2 Related Work

We briefly overview related work here; for a more comprehensive discussion, refer to Appendix A.

Heterogeneous treatment effect estimation from observational data: Recent advances in machine
learning have expanded the use of observational data to estimate CATEs using diverse techniques
such as random forests [51], Bayesian algorithms [24], deep learning [48], and meta-learners [33].
However, these methods often unrealistically assume an absence of confounding, limiting their
real-world applicability. Efforts to account for unobserved confounding either construct bounds
on treatment effects [17, 40] or use latent variable models and multiple/sequential treatments to
debias CATE estimates [9, 36, 53], but they frequently depend on unverifiable assumptions or require
accurate proxy data, reducing their practical utility.

Heterogeneous treatment effect estimation using IVs: Integrating machine learning with instru-
mental variable (IV) methods enhances CATE estimation flexibility over traditional approaches.
Techniques range from advanced two-stage least squares (2SLS) that incorporate complex feature
mappings via kernel methods [49] and deep learning [54] to neural networks for conditional density
estimation [21] and moment conditions for IV estimation [8]. Yet, these rely on the consistent
relevance of instruments across covariate groups, which is not guaranteed with weak instruments.

Treatment Effect Estimation with Weak Instruments: Traditional IV methods like 2SLS can be
unreliable when instruments are weak, leading to biased, high-variance estimates. Recent advance-
ments include novel estimators such as bias-adjusted 2SLS, limited information maximum likelihood,
and jackknife IV estimators (see [25] and references therein). Other techniques attempt to reduce
variance by exploiting first-stage heterogeneity (variation in compliance) [1, 13]. Some approaches
also combine multiple weak instruments into robust composites, useful in settings like genetic studies
[30]. Our approach extends [1, 13] by leveraging compliance weighting to estimate heterogeneous
effects and address weak instruments using additional observational data.

Combining observational and randomized data: Increasing research focuses on integrating
observational datasets with randomized control trial (RCT) data to mitigate observational bias.
Strategies include imposing structural assumptions, such as strong parametric constraints [29], or
assuming a shared structure between biased and unbiased CATE functions [23], as well as optimizing
dual estimators from both data types for improved bias correction [55]. Our work aligns with efforts to
debias treatment effects using both observational and experimental data, but also addresses challenges
such as low IV compliance, the need to debias the overall effect function rather than individual
outcome functions, and the complexity of estimating CATEs from IV data using a ratio estimator.

Where our work lies: To the best of our knowledge, no current estimation technique effectively com-
bines an IV study, particularly one with weak instruments or low compliance, with an observational
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study to derive robust and unbiased CATE estimates. We bridge this gap by introducing two robust
and consistent CATE estimation techniques, building upon previous work on combining RCT and
observational data [23, 29], as well as work that addresses the complexities associated with weak
instruments [1, 13].

3 Background and Setup

We consider the standard setting of causal inference where the goal is to estimate the conditional
average treatment effect of a binary treatment A ∈ {0, 1} on an outcome Y ∈ R in the presence
of covariates X ∈ X ⊆ Rm. Our approach is grounded in Rubin’s potential outcomes framework,
wherein each unit is associated with two potential outcomes Y (0), Y (1) of which only Y = Y (A) is
observed (causal consistency). Our objective is to learn the CATE function, which is given by:

τ(x) = E[Y (1)− Y (0) | X = x]. (1)

However, we only have access to nO i.i.d. samples from an observational dataset O =
(XO

i , AO
i , Y

O
i )nO

i=1 ∼ (XO, AO, Y O). Thus, we face the fundamental problem of causal inference:
only the outcome under the administered treatment is observed, while the counterfactual remains
unobserved. Without further assumptions, there exists the possibility of unobserved confounding,
leading to a situation where

τO(x) = E[Y O | AO = 1, XO = x]− E[Y O | AO = 0, XO = x] ̸= τ(x), (2)

which indicates a persistent bias in the observed treatment effects that does not diminish even with an
increasing sample size. We denote this bias by b(x), that is:

b(x) = τ(x)− τO(x).

Assuming this bias is induced by a set of unobserved confounders U ⊆ Rk, the discrepancy arises
because the selection into treatment in the observational population is influenced by U , which also
impacts the outcome Y O. Our goal is to mitigate this bias by leveraging additional data.

Alongside the observational dataset, we have nE i.i.d. samples from an experimental, intent-to-treat
dataset E = (XE

i , ZE
i , AE

i , Y
E
i )nE

i=1 ∼ (XE , ZE , AE , Y E) where ZE is a binary instrument taking
values in {0, 1}. We let XE ∈ X and assume the pXE (x) = pXO (x), where pX denotes the
density of the random variable X . Moreover, we assume that the joint distribution of covariates and
unobserved confounders (X,U) is consistent across both datasets. As before, we use Y E(A,Z) to
denote the potential outcome given treatment A and instrument Z. Additionally, let AE(Z) denote
the potential treatment under instrument Z, and define the compliance and defiance indicators C
and D by C := I[AE(1) > AE(0)] and D := I[AE(1) < AE(0)], respectively. We assume that this
dataset follows standard IV assumptions on the data generating process:

Assumption 1 (Standard IV Assumptions). We assume the following properties hold: (Exclusion)
Y E(AE , ZE) = Y E(AE), i.e. the instrument affects the outcome only through the treatment;
(Independence) Z ⊥⊥ U | X for any unobserved confounder U ; and (Relevance) there exists a subset
X ′ ⊆ X with non-zero measure such that ZE ̸⊥⊥ AE | XE for XE ∈ X ′.

Assumption 2 (Unconfounded Compliance [52]). The individual treatment effect is independent of
the compliance status given covariates: Y E(1)− Y E(0) ⊥⊥ (AE(1)−AE(0)) | XE .

We note that the relevance assumption in Assumption 1 is a weaker version of the standard IV
assumptions since we allow for arbitrarily weak instruments in some regions of the covariate spaces.
With Assumption 1 and Assumption 2, we can identify the CATE for x ∈ X ′ as:

τE(x) =
E[Y E | ZE = 1, XE = x]− E[Y E | ZE = 0, XE = x]

E[AE | ZE = 1, XE = x]− E[AE | ZE = 0, XE = x]
:=

δY (x)

γ(x)
= τ(x). (3)

We provide the proof of Equation 3 in Appendix B. Here, γ(x) denotes heterogeneous compliance,
a measure of instrument strength, given by γ(x) = P (C = 1 | XE = x) − P (D = 1 | XE = x)
under Assumption 2. A strong instrument (γ(x) → 1) indicates high adherence to the recommended
treatment, with γ(x) = 1 signifying perfect compliance, similar to a true randomized controlled
trial. Conversely, a weak instrument (γ(x) → 0) suggests minimal influence on treatment uptake,
with γ(x) = 0 indicating no compliance and a confounded selection into treatment. The relevance
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assumption in Assumption 1 ensures γ(x) ̸= 0 for x′ ∈ X ′, validating the estimation procedure in
Equation 3. However, small γ(x) values lead to estimates of τ(x) with high asymptotic variance.
Moreover, we wish to extend the τ(x) estimation from X ′ to X , our population of interest.

Thus, relying solely on observational data results in biased τ(x) estimates, while experimental data
alone can yield high variance or invalid estimates for x ∈ X with low compliance. This work
addresses these challenges by strategically combining the strengths of both datasets to provide a
robust CATE estimation technique.

Notation: We denote the L2 norm of a function f as ∥f∥L2
:= EF [f(X)2]1/2, and the L2 Euclidean

norm of a vector θ ∈ Rd as ∥θ∥2. The notation f̂ represents the estimated value of a parameter or
function, where f is the true value. We omit the distribution subscript when clear from context; e.g.,
E[XE ] and E[XO] denote expectations over experimental and observational samples, respectively.

4 Estimation Method

Figure 1: Illustration of our two-stage pro-
cedure: the first stage learns a biased CATE
from observational data, while the second
stage uses IV data to correct the bias.

To obtain robust estimates of the CATE function for
the population of interest X , we propose a two-step
framework that integrates information from both the
observational data and the IV study. First, we esti-
mate the confounded CATE function τ̂O(x) using the
observational data (XO

i , AO
i , Y

O
i )nO

i=1. This is a well-
established problem in both causal inference and ma-
chine learning, and it can be addressed using various
existing techniques, including meta-learners ([33]),
random forests ([51]), and neural networks ([48]).

Next, we wish to approximate the bias function b(x) =
τ(x) − τO(x) using the learned τ̂O(x). Without or-
acle access to the true CATE function τ(x), we in-
stead rely on samples from the experimental (IV) study
(XE

i , ZE
i , AE

i , Y
E
i )nE

i=1 for which we can estimate an
unbiased, though potentially high variance, CATE for
x ∈ X ′, as given in Equation 3. Our approach hinges
on the following lemma:
Lemma 1. [CATE Estimation with IVs] Let πZ(x) := P (ZE = 1 | XE = x) be the instrument
propensity. Then, the following identity holds for every x ∈ X ′:

E
[

Y EZE

πZ(x)γ(x)
− Y E(1− ZE)

(1− πZ(x))γ(x)

∣∣∣∣XE = x

]
= τ(x)

We note that in the case of randomized instrument assignment, the instrument propensity is known
and often given by a constant, i.e., πZ(x) = πZ > 0. By defining VZ(x) := πZ(x)(1 − πZ(x)),
Lemma 1 shows that the bias function b(x) can be expressed in terms of observable quantities as
b(x) = E

[
Y EZE(1−πZ(XE))−Y E(1−ZE)πZ(XE)

VZ(XE)γ(XE)
− τO(x) | XE = x

]
for x ∈ X ′. This formulation

suggests that we can estimate γ(x) and, if necessary, πZ(x) from data and utilize the pseudo-outcome

Ỹ E

V̂Z(XE)γ̂(XE)
:=

Y EZE(1− π̂Z(X
E))− Y E(1− ZE)π̂Z(X

E)

V̂Z(XE)γ̂(XE)

along with the estimated τ̂O(x), in a subsequent regression task to obtain an unbiased and consistent
estimate of b(x) for x ∈ X ′ (provided πZ , γ, and τ̂O are estimated consistently). However, such an
estimator only provides estimates for X ′ where γ(x) ̸= 0. Additionally, for small values of γ(x),
πZ(x), and 1− πZ(x), this method may result in high variance in the estimates b̂(x), especially for
certain parametric function classes. To address these challenges, we weight the data samples by the
inverse variance of Ỹ E/(γ̂(x)V̂Z(x)) given by Var(Ỹ E |XE = x)−1γ̂2(x)V̂ 2

Z (x). This approach is
frequently used in generalized least squares methods (GLS, [2]) to confer the algorithm asymptotic
efficiency. While Var(Ỹ E |XE = x) can be estimated from data using machine learning methods, it
is generally preferable to weight the estimator solely by compliance and instrument propensity to
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Algorithm 1 CATE Estimation with Parametric Extrapolation

1: Input: Observational dataset O = (XO
i , AO

i , Y
O
i )nO

i=1, IV dataset E = (XE
i , ZE

i , AE
i , Y

E
i )nE

i=1, τO(x)

estimator T , γ(x) estimator G, πZ(x) estimator P , known mapping ϕ : X → Rd.
2: Learn τ̂O(x) using T on O. Let Ỹ ∈ RnE , X̃ ∈ RnE×d.
3: for k = 1, 2, . . . ,K do
4: Set Ik = {i ∈ {1, . . . , nE} : i = k − 1 (mod K)}.
5: Use data {(XE

i , ZE
i , AE

i , Y
E
i ) ∈ E : i ̸∈ Ik} to learn γ̂(k)(x) with G and π̂

(k)
Z (x) with P .

6: for i = k − 1 (mod K) do
7: Set Ỹi = Y E

i ZE
i (1− π̂

(k)
Z (XE

i ))− Y E
i (1− ZE

i )π̂
(k)
Z (XE

i )− ŵ(k)(XE
i )τ̂O(XE

i ).
8: Set X̃ij = ŵ(k)(XE

i )ϕj(X
E
i ) for each j ∈ {1, . . . , d}.

9: Output: θ̂ = (X̃
T

X̃)−1X̃
T

Ỹ.

avoid issues with small values of Var(Ỹ E |XE = x). Assuming the bias function belongs to a class
of functions B, our proposed algorithm can be described by the following weighted empirical risk
minimization (ERM) procedure.

b̂ = argmin
b∈B

nE∑
i=1

(
Ỹ E
i − γ̂(XE

i )V̂Z(X
E
i )τ̂O(XE

i )− γ̂(XE
i )V̂Z(X

E
i )b(XE

i )
)2

(4)

where the factor γ̂2(x)V̂ 2
Z (x) was used for weighting the squared loss. This estimator automatically

extrapolates to all of X since we assign weights of 0 when γ̂(x) = 0. Moreover, this method places
higher emphasis on lower-variance pseudo-outcomes, thereby minimizing the risk of overfitting
to data points with high variance. This weighting technique is commonly employed in other IV
estimation tasks, such as local average treatment effect estimation (LATE), where weighting data
points by compliance yields estimators with lower variance ([1, 13]).

The weighting scheme in Equation 4 creates a weighted distribution, p̃XE (x), for optimizing the
ERM procedure. Since p̃XE (x) differs from the target distribution pXE (x), this introduces a transfer
learning problem. Without additional constraints on the function class B, the minimization in
Equation 4 may yield many possible solutions. To ensure a unique or limited solution set, B must
have low complexity or require further structural assumptions. We explore two function classes
B: a parametric class defined by b(x) = θTϕ(x), θ ∈ Rd with a known mapping ϕ : X → Rd,
and a second parametric class where b(x) = νTϕ(x), with ν ∈ Rd and ϕ ∈ Φ being a learned
representation common to both the observational and IV datasets.

4.1 Integrating Observational and Experimental Data via Parametric Extrapolation

We consider a parametric class Bϕ = {θTϕ(x) : θ ∈ Rd} for a known mapping ϕ : X → Rd.
Since the compliance factor γ(x), instrument propensity πZ(x), and the parameter of interest θT are
learned from the same dataset E, we propose the following K-fold cross-fitted estimation procedure:

θ̂ = arg min
θ∈Rd

K∑
k=1

∑
i∈IE

k

(
Ỹ E
i − ŵ(k)(XE

i )τ̂O(XE
i )− θT ŵ(k)(XE

i )ϕ(XE
i )
)2

(5)

where ŵ(k)(XE
i ) := γ̂(k)(XE

i )V̂
(k)
Z (XE

i ), and the compliance factor γ̂(k) and instrument propensity
π̂
(k)
Z , k ∈ [K] are trained on E excluding the kth fold containing indices IE

k . K-fold cross-fitting is
crucial because it ensures that the weights are learned from data distinct from that used in the ERM
algorithm. This separation is essential for maintaining desirable theoretical properties as we remain
methodologically agnostic to the techniques used for learning γ and πZ .

The compliance factor γ(x) = E[AE | ZE = 1, XE = x] − E[AE | ZE = 0, XE = x] can
be estimated using standard machine learning classification algorithms, either by training separate
classifiers for AE | ZE = 1, XE = x and AE | ZE = 0, XE = x or by using one classifier
with ZE as an additional feature. Similarly, instrument propensity estimation is a straightforward
classification task with ZE as the target. Given estimates τ̂O, γ̂(k), and π̂

(k)
Z , the result in Equation 5

is obtained by performing an OLS procedure with the targets Ỹ E
i − ŵ(k)(XE

i )τ̂O(XE
i ) and the
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design matrix X̃ = W (XE)Φ(XE). Here, W (XE) = diag(ŵ(k)(XE
i ), . . . , ŵ(k)(XE

nE
)), and

Φ(XE) = (ϕ(XE
1 ), . . . , ϕ(XE

nE
))T . The two-step procedure is detailed in Algorithm 1.

Next, we provide theoretical guarantees for our parametric extrapolation approach. We begin by
describing the regularity assumptions that enable the consistency of our estimator.
Assumption 3 (Regularity Assumptions). The following claims are true:

1. (Treatment Positivity in O) ϵ ≤ P (AO = 1 | XO = x) ≤ 1− ϵ for some ϵ > 0.

2. (Instrument Positivity in E) ϵ ≤ πZ(X
E), π̂Z(X

E) ≤ 1− ϵ for some ϵ > 0.

3. (Boundedness) Y E , Y O, ∥XE∥2, ∥ϕ(XE)∥2, τ̂O(x), γ̂(x) are uniformly bounded.

4. (Realizability of b(x)) b(x) ∈ Bϕ, i.e. τ(x)− τO(x) = θTϕ(x) for some θ ∈ Rd.

5. (Identifiability of θ) E[ϕ(XE)ϕ(XE)T ] is invertible.

The first two conditions in Assumption 3 are standard in causal inference, ensuring that both treatments
(or instruments) and controls are observable for every x ∈ X , enabling CATE estimation. The third
condition imposes a common boundedness assumption to control the growth of estimands. The fourth
condition ensures our model for the bias function b(x) is well-specified given Bϕ. The final condition
requires that the design matrix has rank d, ensuring we can learn the parameter θ from data. Given
Assumption 3, we present the following theoretical result:
Theorem 2 (Estimator Consistency for Parametric Extrapolation). Let rγ(n), rπZ

(n), and rτO (n)

be op(1) functions of n ∈ N such that ∥γ − γ̂(k)∥L2 ≤ rγ(nE), ∥πZ − π̂
(k)
Z ∥L2 ≤ rπZ

(nE), and
∥τO − τ̂O∥L2 ≤ rτO (nO). Furthermore, assume the conditions of Assumption 1, Assumption 2, and
Assumption 3 hold. Then, the parameter θ̂ returned by Algorithm 1 is consistent and satisfies∥∥θ̂ − θ

∥∥
2
= Op (rγ(nE) + rπZ

(nE) + rτO (nO) + 1/
√
nE) .

Moreover, τ̂ is consistent on X with convergence rate given by

∥τ̂ − τ∥L2 = Op (rγ(nE) + rπZ
(nE) + rτO (nO) + 1/

√
nE) .

We include the proof of Theorem 2 in Appendix B. The core insight is that weighted OLS remains
consistent as long as the estimates for γ̂, π̂Z , and τ̂O are themselves consistent. However, the overall
convergence rate is constrained by the slowest of these rates. In most cases, πZ is assumed to be
known, meaning the convergence rate is primarily dictated by the rates of γ̂ and τ̂O. This result
highlights the trade-off involved in leveraging both datasets to achieve accurate effect estimation for
the target population.
Remark 1 (Impact of Realizability Violations). When realizability does not hold, i.e. b(x) /∈ B,
our estimator may be inconsistent and exhibit asymptotic bias, proportional to the deviation of the
true function from B. Nonetheless, conducting this analysis might still be valuable, as the resulting
bias may be smaller than confounding bias in observational estimates or the variance from low
compliance in IV studies. Thus, even with uncertain realizability, our method may provide more
accurate CATE estimates by effectively balancing bias and variance.

4.2 Integrating Observational and Experimental Data via a Common Representation

Without expert knowledge, the mapping ϕ(x) may not be known a priori. In this section, we introduce
a method to jointly learn both the unbiased CATE function and the mapping ϕ(x) (hereafter referred
to as the representation), based on the assumption that the true CATE τ(x) and the biased CATE
τO(x) share a common representation. This approach leverages machine learning techniques that
assume a common structure across tasks, such as multi-task and transfer learning. In causal inference,
it has been suggested that a shared representation can be assumed between treatment arms [47, 48]
or between randomized data and confounded observational data [23]. This framework enables us to
learn the bias function b(x) even when the mapping ϕ(x) ∈ Φ is otherwise unknown.

We consider a class Φ of representations ϕ(x) : X → Rd and assume that there exists a shared
representation ϕ ∈ Φ between the true and biased CATEs. Specifically, there exist linear hypotheses
h, hO ∈ Rd such that τ(x) = hTϕ(x) and τO(x) = (hO)Tϕ(x), resulting in the bias function
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Algorithm 2 CATE Estimation with Representation Learning

1: Input: Observational dataset O = (XO
i , AO

i , Y
O
i )nO

i=1, IV dataset E = (XE
i , ZE

i , AE
i , Y

E
i )nE

i=1, (ϕ, hO)
estimator T , γ(x) estimator G, πZ(x) estimator P .

2: Learn ϕ̂(x) and ĥO using T on O.
3: Call Algorithm 1 with ϕ = ϕ̂ and τ̂O(x) = (ĥO)T ϕ̂(x). Let ν̂ be its output.
4: Output: ν̂.

b(x) = (h− hO)Tϕ(x) := νTϕ(x). For simplicity, we focus on linear-in-representation classes, but
more complex hypotheses h with τ(x) = h(ϕ(x)) can be considered – see [23, 47]. Thus, b(x) ∈ Bϕ

for the unknown ϕ, with Bϕ defined in Section 4.1. Suppose there exists an ERM algorithm T that
can jointly learn ϕ(x) and hO from the observational data, O. Our learning algorithm proceeds as
follows: first, we use T to learn ϕ̂(x) and ĥO from O, alongside estimates γ̂(k)(x) and V̂

(k)
Z (x) from

E as described in Section 4.1. In the second stage, we apply the following ERM procedure to estimate
the parameter ν:

ν̂ = arg min
ν∈Rd

K∑
k=1

∑
i∈IE

k

(
Ỹ E
i −

(
ĥO
)T

ŵ(k)(XE
i )ϕ̂(XE

i )− νT ŵ(k)(XE
i )ϕ̂(XE

i )
)2

. (6)

This procedure is detailed in Algorithm 2. Finally, we recover τ̂(x) by setting τ̂(x) = (ĥO+ ν̂)T ϕ̂(x).
Example 1 (Representation learning with neural networks). Let Φ be a class of feed-forward neural
networks. Then ϕ̂(x), ĥO and τ̂O(x) can be jointly learned by composing Φ with two linear output
heads for Y O | AO = 1, XO = x and Y O | AO = 0, XO = x, respectively. By taking the difference
between the two output heads, we can reconstruct τ̂O(x), assuming that E[Y O | AO = 1, XO = x]
and E[Y O | AO = 0, XO = x] are also linear in ϕ (see [47, 48]). Without this assumption, we
can learn τO(x) directly by composing Φ with one linear output layer and considering the pseudo-
outcome Y OAO

πA(XO)
− Y O(1−AO)

(1−πA(XO))
. Here, πA(X

O) = P (AO = 1 | XO) is the treatment propensity in
O and can be learned using any black-box machine learning classifier.

With this setup, we obtain theoretical results similar to those in Theorem 2:
Theorem 3 (Estimator Consistency for Shared Representation Learning). Let rγ(n), rπZ

(n), and
rϕ(n) be op(1) functions of n ∈ N such that ∥γ − γ̂(k)∥L2 ≤ rγ(nE), ∥πZ − π̂

(k)
Z ∥L2 ≤ rπZ

(nE),
and

∥∥ϕ− ϕ̂
∥∥
L2

≤ rϕ(nO). Additionally, assume
∥∥ϕ̂∥∥

2
is bounded and E

[
ϕ̂(X)ϕ̂(X)T

]
is invertible.

Let us also consider the conditions specified in Assumption 1 and Assumption 2 to be satisfied.
Moreover, assume that τO(x) = (hO)Tϕ(x) for some ϕ that is realizable within the representation
class Φ and let Assumption 3 hold for ϕ. Under these conditions, the parameter ν̂ returned by
Algorithm 2 is consistent and satisfies

∥ν̂ − ν∥2 = Op (rγ(nE) + rπZ
(nE) + rϕ(nO) + 1/

√
nE + 1/

√
nO) .

Moreover, τ̂ is consistent on X with convergence rate given by

∥τ̂ − τ∥L2
= Op (rγ(nE) + rπZ

(nE) + rϕ(nO) + 1/
√
nE + 1/

√
nO) .

We provide the proof of Theorem 3 in Appendix B. This result hinges on the realizability assumption
in Φ and the linear-in-representation structure of both τ and τO. In Example 1, rϕ(n) bounds the
generalization error for feed-forward neural networks. For ReLU activations and bounded outputs,
rϕ(n) = C

√
WL logW log n/

√
n, where W is the total number of weights, L is the number of

layers, and C is a constant independent of n and W [15, 56]. While this rate is parametric, it scales
linearly with W , which becomes problematic for over-parameterized networks. For 1-Lipschitz

activations and bounded weights, [18] derive a rate of rϕ(n) = C
√
ΠL

l=1M(l)/n1/4, where M(l)

bounds the Frobenius norm of layer l’s weight matrix.

Practical Guidance in High-Dimensional Settings: When ϕ(x) is high-dimensional, controlling
the complexity of Bϕ through regularization is crucial, especially since the bias function b(x) is used
to extrapolate the CATE into low-variance regions where compliance is low and the risk of overfitting
is high. In the parametric extrapolation approach (Section 4.1), applying L1 or L2 regularization via
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Figure 2: Means and standard errors of estimates from 100 simulated dataset pairs (O,E) using
Random Forest (top) or Neural Network (bottom) learners. (2a): Biased observational CATE τO(x).
(2b): High variance CATEs from the IV dataset using Equation 3. (2c): CATEs from Algorithm 2
using parametric extrapolation (top) or representation learning (bottom).

Lasso or Ridge regression in the final step is effective for controlling model complexity. In the shared
representation approach (Example 1), regularization not only helps control the parameters hO and
ν but also prevents over-parametrization in the neural network ϕ. The choice between L1 and L2

regularization, and how they are applied, should be aligned with the data-generating process and the
specific characteristics of the model.

5 Experimental Results

We apply our method to both simulated and real-world data. First, we use the confounded synthetic
data example from [29], along with a similar data generating process (DGP) to simulate an IV study,
maintaining the same confounding structure and treatment effects. Using this DGP, we evaluate
Algorithm 1 and Algorithm 2 in estimating the unbiased CATE by integrating these datasets. Next, we
demonstrate our estimators on a real-world dataset examining the impact of 401(k) participation on
financial wealth. Additional experiments, as well as details on model implementation, hyperparameter
selection, and validation procedures are in Appendix C. The replication code is available at https:
//github.com/CausalML/Weak-Instruments-Obs-Data-CATE.

5.1 Simulation Studies

We generate the observational dataset O = (XO, AO, Y O) as follows (see [29])1:

X ∼ N (0, 1), A ∼ Bern(0.5), U | X,A ∼ N (X (A− 0.5) , 0.75)

Y = 1 +A+X + 2AX + 0.5X2 + 0.75AX2 + U + 0.5ϵY , ϵY ∼ N (0, 1) (7)

In this DGP, the true CATE is given by τ(x) = 0.75x2 + 2x+ 1, whereas the biased observational
CATE is represented by τO(x) = 0.75x2 + 3x + 1. This results in a bias b(x) = −x, which is
linear in x. We modify this DGP to generate the experimental IV dataset E = (XE , ZE , AE , Y E)
as follows:

X ∼ N (0, 1), Z ∼ Bern(0.5), A∗ ∼ Bern(0.5)
γ(X) = σ(2X), C ∼ Bern(γ(X)), A = C · Z + (1− C) ·A∗

U | X,A,C ∼ C · N (0, 1) + (1− C) · N (X (A− 0.5) , 0.75)

where C is the (unknown) compliance indicator, σ is the logistic sigmoid and we keep the same
outcome function as in Equation 7. In this modified DGP, the randomized instrument has compliance
sharply determined by X , with low X values indicating almost no compliance and high X values
indicating near-perfect compliance.

1For experimental results using a higher-dimensional version of this DGP, refer to Appendix C.
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Figure 3: Impact of 401(k) participation on net worth by education level: Using τ̂(x) from Algo-
rithm 1, we fix age, income, and binary variables, varying education and marital status. The black line
shows results from Algorithm 1, and the dashed line indicates predictions in the no-compliance region.
τ̂O(x) is the biased observational CATE, while τ̂E(x) is the IV CATE without non-compliance.

We generate 100 observational and IV datasets, each with 5,000 samples, from the proposed DGP. We
first apply Algorithm 1 to each dataset. With a randomized instrument, πZ(x) = 0.5. We estimate
γ(x) as the difference between Random Forest (RF) classifiers trained on (XE , AE) | ZE = 0
and (XE , AE) | ZE = 1, i.e. one is trained the subset of data where the instrumental variable
ZE = 0 (using XE and AE as inputs), and another on the subset where ZE = 1. The biased
observational CATE is modeled using the T-learner approach [33], with RF regressors trained on
XO, Y O | AE = 0 and XO, Y O | AO = 1. For comparison, we implement a CATE estimator for
the experimental data using Equation 3. We compute δY (x) as the difference between RF regressors
trained on XE , Y E | ZE = 0 and XE , Y E | ZE = 1, then divide by γ̂(x), clipping the compliance
score at 0.1. We calculate γ̂(x), τ̂O(x), and τ̂E(x) for each dataset pair and proceed with the second
step of Algorithm 1 by setting ϕ(x) = x.

In Figure 2 (top row), we depict the means and standard errors of our estimators across 100 simulations.
The first two plots illustrate the learned observational CATE τ̂O(x) and the learned IV CATE τ̂E(x).
As expected, τ̂O(x) shows clear bias, while τ̂E(x) has high variance despite aggressive compliance
score clipping. The third plot presents the results from Algorithm 1, showing that the resulting τ̂(x)
is both unbiased and has low variance across X . These findings demonstrate that our two-stage
estimation procedure effectively leverages the strengths of both datasets to capture the true CATE
and address the limitations of each individual study design.

We note that in our DGP, τ(x), τO(x), and b(x) are linear in the polynomial representation (x, x2).
Thus, we next apply Algorithm 2 with Example 1 to learn the true CATE and the common repre-
sentation from the generated dataset. For consistency, we employ feed-forward neural networks
(NNs) to estimate all quantities. The estimator for γ̂ uses a NN with a sigmoid activation in the
output layer, trained on XE with the pseudo-outcome 2AEZE − 2AE(1− ZE). The representation
ϕ(x) and the biased CATE τO(x) are learned using a representation network with two output heads
for learning Y O | XO, AO = 0 and Y O | XO, AO = 1. A similar dual-head approach is used
to learn δY (x), by modeling Y E | XE , ZE = 0 and Y E | XE , ZE = 1 simultaneously. When
calculating δY (x)/γ(x), we clip the compliance score at 0.1. Unlike Algorithm 1, we don’t guarantee
the polynomial representation will be fully captured by the chosen representation class, but we expect
a sufficiently flexible Φ to adequately represent these relationships.

The means and standard errors of our estimators from 100 simulations using neural networks and
Algorithm 2 are shown in Figure 2 (bottom row). As before, τ̂O(x) shows bias, while τ̂E(x) has
high variance in low-compliance regions, despite compliance score clipping. However, Figure 2c
shows that the τ̂ returned by Algorithm 2 remains unbiased with relatively low variance across X .
This demonstrates that combining observational and IV data, where the biased and true CATE share a
representation, allows us to reliably learn both the representation and the unbiased CATE, overcoming
the limitations of each individual study.

5.2 Impact of 401(k) Participation on Financial Wealth

We demonstrate our method’s effectiveness with a real-world case study on the impact of 401(k)
participation on financial wealth, using data from the 1991 Survey of Income and Program Partici-
pation [11]. The dataset includes 9,915 respondents with nine covariates: age, income, education,
family size, marital status, two-earner status, pension status, IRA participation, and home ownership.
The primary variable of interest is 401(k) participation (A), with eligibility (Z) as the instrumental
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variable. Although 401(k) eligibility is not randomly assigned, it is argued to maintain conditional
independence given observed features [11, 43]. We assume 401(k) eligibility influences net worth
only through 401(k) participation, characterizing this as an IV study with one-sided non-compliance,
where non-eligible individuals cannot participate (AE(0) = 0). The target variable (Y ) is net financial
assets, calculated as the total of 401(k) balance, bank account balances, and interest-earning assets,
minus non-mortgage debt.

To replicate the scenario in this paper, we split the dataset into two halves: one for the IV study and
the other for the observational study (where we intentionally remove the instrument information).
Our goal is to use these datasets, along with the parametric extension approach in Algorithm 1, to
recover the unbiased CATEs. Due to one-sided non-compliance, the estimated compliance factor
γ̂(x) is high (0.49− 0.90, see Appendix C). To show the utility of our method, we introduce artificial
non-compliance by setting γ(x) to 0 for individuals with less than 12 years of education (13% of
the population). In the first stage of Algorithm 1, we use RF regressors and classifiers to estimate
τO(x), γ(x), and πZ(x), with hyperparameters set based on other related work on this dataset [12].
In the second stage, we define the mapping ϕ(x) with an intercept term, the 9 covariates, and their
interactions (46 features total). We apply a mild L1 regularization in the final linear regression due to
the large number of resulting features.

In Figure 3, we study how the CATE function from Algorithm 1 varies with education. We focus on
education as it is selected as a top feature by the compliance model, while the outcome models do
not rank it as highly significant (see Appendix C). To explore this relationship, we vary education
and marital status, holding age and income at their median values and setting all binary variables to
zero. Since compliance in the IV study is high, we consider the estimate τ̂E(x) without the artificial
non-compliance as the ground truth for comparison. Our analysis shows that observational data
treatment effects are upwardly biased, likely due to unobserved confounders such as financial literacy.
The τ̂(x) from Algorithm 1, shown with a dashed line for non-compliance regions, closely aligns
with τ̂E(x) (excluding the artificial non-compliance). This demonstrates that combining IV and
observational data can effectively estimate unbiased CATEs in real-world settings, offering a robust
solution for causal inference even in the presence of low compliance and unobserved confounding.

6 Conclusion

This study introduces a method that combines observational and instrumental variable (IV) data to
address unobserved confounders in observational studies and low compliance in IV studies. Our
two-stage framework first estimates biased CATEs from the observational data, then corrects them
using compliance-weighted IV samples. We explore two variations of our procedure: one that models
confounding bias parametrically, and another that leverages a shared representation between the true
and biased CATEs. Both methods are shown to be consistent, validated through simulations and
real-world applications. Our approach holds significant promise for applications in digital platforms,
personalized medicine, and economics, offering a robust tool for deriving reliable, actionable insights
from complex data. Limitations of our work are discussed in Appendix D.
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A Extended Literature Review

Heterogeneous treatment effect estimation from observational data: Recently, there has been a
significant interest in applying machine learning to estimate CATEs using observational data. This
field has seen adaptations of a wide range of machine learning techniques, from random forests
[39, 51] and Bayesian algorithms e.g. [20, 24] to deep learning [5, 27, 48] and blackbox meta-
learners [33, 38] that utilize efficient influence functions [14, 31] and Neyman orthogonality [12, 16].
Despite these advancements, a significant challenge remains as these methods typically assume the
absence of confounding in observational data (ignorability) – an often unrealistic and unverifiable
assumption – limiting their real-world applicability. Without ignorability, point identification of
effects is impossible, although some studies propose methods to construct bounds on treatment
effect estimates under assumptions about the structure of unobserved confounding [17, 28, 40, 45].
Nonetheless, these bounds often have limited practical utility. Other efforts to address confounding
bias in CATE estimation rely on latent variable models to recover unobserved confounders from noisy
proxies [34, 36] or utilize multiple or sequential treatments [9, 22, 53]. However, these methods also
have limited practical impact, as they depend on either the availability of additional accurate proxy
data or unverifiable assumptions such as no unobserved single-cause confounders.

Heterogeneous treatment effect estimation using IVs: Machine learning techniques have recently
been integrated with instrumental variable methods, offering significant advantages over traditional
approaches, including the flexible estimation of CATEs. [49] and [54] expand on two-stage least
squares (2SLS) to incorporate complex feature mappings via kernel methods and deep learning. In the
same vein, [21] introduced a two-stage neural network for conditional density estimation, while [8]
applied moment conditions for IV estimation. [50] propose novel IV estimators that exhibit Neyman
orthogonality. However, these techniques rely on the assumption that instruments are relevant across
all covariate groups, a condition that is not consistently met with weak instruments.

Treatment effect estimation with weak instruments: Weak instruments compromise the reli-
ability of traditional IV methods like 2SLS, often producing biased, high-variance estimates and
undermining causal claims. To mitigate these issues, several approaches have been developed, includ-
ing bias-adjusted 2SLS estimators, limited information maximum likelihood (LIML), and jackknife
instrumental variable (JIVE) estimators (see [25] and references therein). Recent methods reduce
2SLS estimator variance by exploiting first-stage heterogeneity (variation in compliance) through a
weighting scheme, as detailed in [1, 13, 32]. However, these methods do not extend to estimating
conditional average treatment effects. Another strand of research focuses on combining multiple
weak instruments into a robust composite, showing promise in genetic studies using Mendelian
randomization ([30, 35]). These approaches require access to multiple weak instruments for the
same treatment. Our work aligns most closely with [1, 13, 32] in that we leverage compliance
heterogeneity and employ compliance weighting to merge IV studies with observational data for
efficient confounding bias estimation. Unlike these studies, however, our approach distinctively
estimates heterogeneous effects and leverages additional observational data to address challenges
posed by weak instruments.

Combining observational and randomized data: There has been a proliferation of research in
combining observational datasets with randomized control trials – experimental data with perfect
compliance – to mitigate bias from observational studies. One of the strategies is to impose structural
assumptions such as strong parametric assumptions for the confounding bias [29] or a shared structure
between the biased and unbiased CATE functions that can be estimated from the two datasets [23].
Other studies advocate for dual estimators from both data types, optimizing bias correction through a
weighted average [10, 46, 55]. Additionally, approaches like those by [6] and [26] leverage outcomes
from different time-steps, such as short-term and long-term effects, to enhance estimation accuracy.
Our work is closest to [29] and [23]. However, our study faces additional complexities: firstly, the
CATE estimation techniques differ between the datasets, requiring us to debias the overall effect
function rather than just individual outcome functions. Secondly, RCTs may not represent the target
population due to their narrow scope, our instrumental variable (IV) study faces representation
issues due to minimal or absent compliance in strata that are not known a priori. Thirdly, the
CATE estimation in our IV study uses a ratio estimator, which is highly sensitive to changes in the
compliance denominator, adding a layer of complexity to our analysis.

14



B Proofs of Theorems and Lemmas

B.1 Proof of Equation 3

The exclusion and independence conditions in Assumption 1 imply that the following identification
equation holds:

E
[
Y E

(
AE(1)

)
− Y E

(
AE(0)

)
| XE = x

]
(8)

= E[Y E | ZE = 1, XE = x]− E[Y E | ZE = 0, XE = x].

By noting that
Y E

(
AE(1)

)
− Y E

(
AE(0)

)
= Y (1)− Y (0), when AE(1) = 1, AE(0) = 0 (compliers)

Y E
(
AE(1)

)
− Y E

(
AE(0)

)
= Y (0)− Y (1), when AE(1) = 0, AE(0) = 1 (defiers)

Y E
(
AE(1)

)
− Y E

(
AE(0)

)
= 0, when AE(1) = 1, AE(0) = 1 (always-takers)

Y E
(
AE(1)

)
− Y E

(
AE(0)

)
= 0, when AE(1) = 0, AE(0) = 0 (never-takers)

the left-hand side of this equation can further be written as:

E[Y E(AE(1))− Y E(AE(0)) | XE = x] (9)

= E[(Y E(1)− Y E(0))(AE(1)−AE(0)) | XE = x]

= E[Y E(1)− Y E(0) | XE = x] · E[AE(1)−AE(0) | XE = x] (Assumption 2)

= τ(x) · (E[AE | ZE = 1, XE = x]− E[AE | ZE = 0, XE = x]) (Assumption 1)

Since the claim of Equation 3 holds for x ∈ X ′, we have that E[AE | ZE = 1, XE = x]− E[AE |
ZE = 0, XE = x] ̸= 0 by the relevance condition in Assumption 1. From Eqs. 8 and 9, we obtain:

τ(x) =
E[Y E | ZE = 1, XE = x]− E[Y E | ZE = 0, XE = x]

E[AE | ZE = 1, XE = x]− E[AE | ZE = 0, XE = x]

for x ∈ X ′.

B.2 Proof of Lemma 1

Recall that for any x ∈ X ′, we have that γ(x) ̸= 0 by Assumption 2. Then, assuming that πZ(x) > 0,
we use the law of total expectation as follows:

E
[

Y EZE

πZ(x)γ(x)
− Y E(1− ZE)

(1− πZ(x))γ(x)

∣∣∣∣XE = x

]
= E

[
Y EZE

πZ(x)γ(x)
− Y E(1− ZE)

(1− πZ(x))γ(x)

∣∣∣∣ZE = 1, XE = x

]
P (ZE = 1 | XE = x)

+ E
[

Y EZE

πZ(x)γ(x)
− Y E(1− ZE)

(1− πZ(x))γ(x)

∣∣∣∣ZE = 0, XE = x

]
P (ZE = 0 | XE = x)

= E
[

Y E

πZ(x)γ(x)

∣∣∣∣ZE = 1, XE = x

]
πZ(x)

− E
[

Y E

(1− πZ(x))γ(x)

∣∣∣∣ZE = 0, XE = x

]
(1− πZ(x))

=
E
[
Y E | ZE = 1, XE = x

]
− E

[
Y E | ZE = 0, XE = x

]
γ(x)

=
E
[
Y E | ZE = 1, XE = x

]
− E

[
Y E | ZE = 0, XE = x

]
E [AE | ZE = 1, XE = x]− E [AE | ZE = 0, XE = x]

= τ(x) (Equation 3)

where the intermediate steps follow from the definitions of πZ(x) and γ(x) and the last equality
comes from the identification result in Equation 3.
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B.3 Proof of Theorem 2

For simplicity, we omit the E subscripts from XE , ZE , AE , Y E throughout this proof. Furthermore,
assume that nE is an integer multiple of the number of folds K. Let Êkf(Z) = 1

|Ik|
∑

i∈Ik
f(Zi),

recalling that Ik = {i ∈ {1, . . . , nE} : i = k − 1 (mod K)}, which indexes the subset of data in the
kth fold. Then, we can write the estimated parameter θ̂ as:

θ̂ =

(
1

K

K∑
k=1

Êk

[
ŵ(k)(X)2ϕ(X)ϕ(X)T

])−1

· 1

K

K∑
k=1

Êk

[(
Y Z(1− π̂

(k)
Z (X))− Y (1− Z)π̂

(k)
Z (X)− ŵ(k)(X)τ̂O(X)

)
ŵ(k)(X)ϕ(X)

]
We also define the following quantities:

θ̃nE
= ÊnE

[
w(X)2ϕ(X)ϕ(X)T

]−1

· ÊnE

[(
Y Z(1− πZ(X))− Y (1− Z)πZ(X)− w(X)τO(X)

)
w(X)ϕ(X)

]
θ̃ = E

[
w(X)2ϕ(X)ϕ(X)T

]−1

· E
[(
Y Z(1− πZ(X))− Y (1− Z)πZ(X)− w(X)τO(X)

)
w(X)ϕ(X)

]
We note that these quantities are well defined because E

[
w(X)2ϕ(X)ϕ(X)T

]
is invertible. This

follows from the first and last conditions of Assumption 3, along with the stipulation in Assumption 1
that γ(x) ̸= 0 for all x in a set of non-zero measure. Using these definitions, we can write∥∥∥θ̂ − θ

∥∥∥
2
=
∥∥∥θ̂ − θ̃nE

+ θ̃nE
− θ̃ + θ̃ − θ

∥∥∥
2

≤
∥∥∥θ̂ − θ̃nE

∥∥∥
2︸ ︷︷ ︸

λ1

+
∥∥∥θ̃nE

− θ̃
∥∥∥
2︸ ︷︷ ︸

λ2

+
∥∥∥θ̃ − θ

∥∥∥
2︸ ︷︷ ︸

λ3

(Triangle Inequality)

We study these terms separately. We notice that λ2 is just linear regression of the modified outcome
Y Z(1 − πZ(X)) − Y (1 − Z)πZ(X) − w(X)τO(X) on ϕ(X) using weights w(X). Given the
regularity conditions in Assumption 3 (which subsume the standard regularity conditions of linear
regression), we have that λ2 is Op(1/

√
nE). Then, consider the θ̃ term. We have:

θ̃ = E
[
w(X)2ϕ(X)ϕ(X)T

]−1

· E
[(
Y Z(1− πZ(X))− Y (1− Z)πZ(X)− w(X)τO(X)

)
w(X)ϕ(X)

]
= E

[
w(X)2ϕ(X)ϕ(X)T

]−1

· E
[(
Y Z(1− πZ(X))− Y (1− Z)πZ(X)− w(X)τ(X) + w(X)θTϕ(X)

)
w(X)ϕ(X)

]
(Realizability of b(X))

= E
[
w(X)2ϕ(X)ϕ(X)T | γ(X) ̸= 0

]−1
P (γ(X) ̸= 0)−1

·
(
E [(Y Z(1− πZ(X))− Y (1− Z)πZ(X)− w(X)τ(X))w(X)ϕ(X) | γ(X) ̸= 0]

+ E
[
w(X)2ϕ(X)ϕ(X)T θ | γ(X) ̸= 0

] )
P (γ(X) ̸= 0)

= E
[
w(X)2ϕ(X)ϕ(X)T | γ(X) ̸= 0

]−1

· E [(Y Z(1− πZ(X))− Y (1− Z)πZ(X)− w(X)τ(X))w(X)ϕ(X) | γ(X) ̸= 0] + θ

= E
[
w(X)2ϕ(X)ϕ(X)T | γ(X) ̸= 0

]−1

· E

[(
Y Z

πZ(X)γ(X)
− Y (1− Z)

(1− πZ(X))γ(X)
− τ(X)

)
w(X)2ϕ(X)

∣∣∣∣∣γ(X) ̸= 0

]
+ θ

(Since γ(X) ̸= 0 implies w(X) ̸= 0 by Assumption 3)
= θ. (Lemma 1)
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Thus, θ̃ = θ which implies λ3 = 0. We now tackle the λ1 term. To streamline the exposition, let us
introduce the following shorthand notation:

Ŷ (k) := Y Z(1− π̂
(k)
Z (X))− Y (1− Z)π̂

(k)
Z (X)

Ỹ := Y Z(1− πZ(X))− Y (1− Z)πZ(X)

Σ̂K :=
1

K

K∑
k=1

Êk

[
ŵ(k)(X)2ϕ(X)ϕ(X)T

]
ΣK := E

[
ŵ(k)(X)2ϕ(X)ϕ(X)T

]
Σ̂ := ÊnE

[
w(X)2ϕ(X)ϕ(X)T

]
Σ := E

[
w(X)2ϕ(X)ϕ(X)T

]
We can then write the θ̂ − θ̃nE

as follows:

θ̂ − θ̃nE

= Σ̂−1
K

1

K

K∑
k=1

Êk

[(
Ŷ (k) − ŵ(k)(X)τ̂O(X)

)
ŵ(k)(X)ϕ(X)

]
− Σ̂−1ÊnE

[(
Ỹ − w(X)τO(X)

)
w(X)ϕ(X)

]
= (Σ̂−1

K − Σ̂−1)
1

K

K∑
k=1

Êk

[(
Ŷ (k) − ŵ(k)(X)τ̂O(X)

)
ŵ(k)(X)ϕ(X)

]
(λ1,1)

+ Σ̂−1 1

K

K∑
k=1

(
E[(Ŷ (k) − ŵ(k)(X)τ̂O(X))ŵ(k)(X)ϕ(X)]

− E[(Ỹ − w(X)τO(X))w(X)ϕ(X)]
)

(λ1,2)

+ Σ̂−1 1

K

K∑
k=1

(Êk − E)
[ (

Ŷ (k) − ŵ(k)(X)τ̂O(X)
)
ŵ(k)(X)ϕ(X)

−
(
Ỹ − w(X)τO(X)

)
w(X)ϕ(X)

]
(λ1,3)

By Cauchy-Schwartz, we can bound the λ1 term as

λ1 =
∥∥∥θ̂ − θ̃nE

∥∥∥
2
≤

3∑
i=1

∥λ1,i∥2,

where we used the λ1,i notation introduced in the preceding equation. We bound each of the λ1,i’s
separately. We let ∥A∥F denote the Frobenius norm of the matrix A. Then, consider λ1,1:

∥λ1,1∥2

≤
∥∥∥Σ̂−1

K − Σ̂−1
∥∥∥
F

∥∥∥∥∥ 1

K

K∑
k=1

Êk

[(
Ŷ (k) − ŵ(k)(X)τ̂O(X)

)
ŵ(k)(X)ϕ(X)

]∥∥∥∥∥
2
(Cauchy-Schwartz)

=
∥∥∥Σ̂−1

K (Σ̂− Σ̂K)Σ̂−1
∥∥∥
F

∥∥∥∥∥ 1

K

K∑
k=1

Êk

[(
Ŷ (k) − ŵ(k)(X)τ̂O(X)

)
ŵ(k)(X)ϕ(X)

]∥∥∥∥∥
2

≤
∥∥∥Σ̂−1

K

∥∥∥
F

∥∥∥Σ̂− Σ̂K

∥∥∥
F

∥∥∥Σ̂−1
∥∥∥
F

∥∥∥∥∥ 1

K

K∑
k=1

Êk

[(
Ŷ (k) − ŵ(k)(X)τ̂O(X)

)
ŵ(k)(X)ϕ(X)

]∥∥∥∥∥
2

= Op

(∥∥∥Σ̂− Σ̂K

∥∥∥
F

)
(By the boundedness conditions in Assumption 3)
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Furthermore,

Σ̂− Σ̂K = ÊnE

[
w(X)2ϕ(X)ϕ(X)T

]
− 1

K

K∑
k=1

Êk

[
ŵ(k)(X)2ϕ(X)ϕ(X)T

]
=

1

K

K∑
k=1

(Êk − E)
[(

w(X)2 − ŵ(k)(X)2
)
ϕ(X)ϕ(X)T

]
+ E

[(
w(X)2 − ŵ(k)(X)2

)
ϕ(X)ϕ(X)T

]
⇒
∥∥∥Σ̂− Σ̂K

∥∥∥
F
≤ 1

K

K∑
k=1

∥∥∥(Êk − E)
[(

w(X)2 − ŵ(k)(X)2
)
ϕ(X)ϕ(X)T

]∥∥∥
F

+
∥∥∥E [(w(X)2 − ŵ(k)(X)2

)
ϕ(X)ϕ(X)T

]∥∥∥
F

≤ 1

K

K∑
k=1

d∑
i,j=1

∣∣∣ (Êk − E)
[(

w(X)2 − ŵ(k)(X)2
)
ϕ(X)iϕ(X)j

]
︸ ︷︷ ︸

:=δk

∣∣∣
+
∥∥w − ŵk

∥∥
L2

E
[(

w(X) + ŵ(k)(X)
)2 ∥∥ϕ(X)ϕ(X)T

∥∥2
F

]1/2
(Holder’s inequality)

By our boundedness assumptions, the second term yields an Op

(
∥w − ŵk∥L2

)
= Op(rγ(nE) +

rπZ
(nE)) term in the expression for Op

(
∥Σ̂− Σ̂K∥F

)
. To analyze the first term, let Ek represent

the samples in the kth fold of the E dataset. Then, δk | Ek has mean 0 since ŵ(k) is independent
from Ek due to the K-fold sample splitting. Then, we can apply Chebyshev’s inequality to obtain

δk | Ek = Op

(
n
−1/2
E E

[(
w(X)2 − ŵ(k)(X)2

)2
ϕ(X)2iϕ(X)2j

∣∣∣Ek

]1/2)
= op(1/

√
nE)

from the consistency assumptions for γ̂(k), π̂
(k)
Z which translate into a consistency assumption for

ŵ(k). By the bounded convergence theorem, this implies that δk is also op(1/
√
nE). Putting

everything together, we obtain

∥λ1,1∥2 = Op(rγ(nE) + rπZ
(nE)) + op(1/

√
nE).

We now tackle λ1,2:

λ1,2

= Σ̂−1 1

K

K∑
k=1

(
E[(Ŷ (k) − ŵ(k)(X)τ̂O(X))ŵ(k)(X)ϕ(X)]

− E[(Ỹ − w(X)τO(X))w(X)ϕ(X)]
)

∥λ1,2∥2

≤ ∥Σ̂−1∥F
1

K

K∑
k=1

·
d∑

i=1

∣∣∣E [(ŵ(k)(X)Ŷ (k) − w(X)Ỹ − ŵ(k)(X)2τ̂O(X) + w(X)2τO(X)
)
ϕ(X)i

]∣∣∣
≤ ∥Σ̂−1∥F

1

K

·
K∑

k=1

d∑
i=1

∥∥∥E [ŵ(k)(X)Ŷ (k) − w(X)Ỹ − ŵ(k)(X)2τ̂O(X) + w(X)2τO(X)
∣∣X]∥∥∥

L2

∥ϕ(X)i∥L2
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Since the ∥ϕ(X)i∥’s are bounded by assumption and Σ̂−1 P→ Σ−1 from the continuous mapping theo-
rem, it suffices to study the term E

[
ŵ(k)Ŷ (k) − w(X)Ỹ − ŵ(k)(X)2τ̂O(X) + w(X)2τO(X)

∣∣X]:∥∥∥E [ŵ(k)(X)Ŷ (k) − w(X)Ỹ − ŵ(k)(X)2τ̂O(X) + w(X)2τO(X)
∣∣X]∥∥∥

L2

≤ ∥E[Y | Z = 1, X]πZ(X){ŵ(k)(X)(1− π̂
(k)
Z (x))− w(X)(1− πZ(X))}∥L2

+ ∥E[Y | Z = 0, X](1− πZ(X)){ŵ(k)(X)π̂
(k)
Z (x)− w(X)πZ(X)}∥L2

+ ∥ŵ(k)(X)2τ̂O(X)− w(X)2τO(X)∥L2

≲ ∥ŵ(k) − w∥L2
+ ∥γ̂(k) − γ∥L2

+ ∥π̂(k)
Z − πZ∥L2

+ ∥τ̂O − τO∥L2

(Boundedness assumptions)

≲ ∥γ̂(k) − γ∥L2
+ ∥π̂(k)

Z − πZ∥L2
+ ∥τ̂O − τO∥L2

(Definition of w(X))
≤ rγ(nE) + rπZ

(nE) + rτO (nO)

where ≲ absorbs constants. Thus, ∥λ1,2∥2 is Op (rγ(nE) + rπZ
(nE) + rτO (nO)). Lastly, we note

that λ1,3 is the empirical process equivalent of λ1,2 and thus, by leveraging sample splitting through
arguments similar those used for the λ1,1 term, we have that ∥λ1,3∥2 is op(1/

√
nE). Putting all λ1,i

terms together, we have that λ1 is Op (rγ(nE) + rπZ
(nE) + rτO (nO)) + op(

√
nE). Recall that λ2

is Op(1/
√
nE) and λ3 = 0, we obtain the desired result:∥∥θ̂ − θ

∥∥
2
= Op (rγ(nE) + rπZ

(nE) + rτO (nO) + 1/
√
nE) .

Given that ∥τ̂ − τ∥L2 = ∥(θ − θ̂)Tϕ(X) + (τO(X)− τ̂O(X))∥L2 , we further have

∥τ̂ − τ∥L2
= Op (rγ(nE) + rπZ

(nE) + rτO (nO) + 1/
√
nE)

by using the derived θ̂ rates, the Cauchy-Schwartz inequality and the boundedness of ∥ϕ(X)∥2
assumption. Our proof is now complete.

B.4 Proof of Theorem 3

We first study the convergence rate of τ̂O using the conditions of Theorem 3. Assume that hO and
ϕ(x) solve the following joint optimization problem:

ĥO, ϕ̂ = argminhO∈Rd,ϕ∈Φ

nO∑
i=1

((
Y OAO

π̂A(X)
− Y O(1−AO)

1− π̂A(X)

)
− (hO)Tϕ(XO)

)2

Then, τ̂O(x) = (ĥO)T ϕ̂(x). Thus, we write:∥∥τO − τ̂O
∥∥
L2

≤
∥∥(hO)Tϕ(X)− (ĥO)T ϕ̂(X)

∥∥
L2

≤
∥∥(hO)Tϕ(X)− (ĥO)Tϕ(X)

∥∥
L2

+
∥∥(ĥO)T (ϕ(X)− ϕ̂(X))

∥∥
L2

≲
∥∥hO − ĥO

∥∥
2
+ rϕ(nO) (Boundedness assumptions)

We further expand the first term:∥∥hO − ĥO
∥∥
2
=
∥∥∥E[ϕ(X)ϕ(X)]−1E[Ỹ ϕ(X)]− ÊnO

[
ϕ̂(X)ϕ̂(X)

]−1ÊnO

[
Ỹ ϕ̂(X)

]∥∥∥
2(

Ỹ := Y OAO

π̂A(X) −
Y O(1−AO)
1−π̂A(X)

)
≤
∥∥∥E[ϕ(X)ϕ(X)]−1E[Ỹ ϕ(X)]− E

[
ϕ̂(X)ϕ̂(X)

]−1E
[
Ỹ ϕ̂(X)

]∥∥∥
2

+
∥∥∥E[ϕ̂(X)ϕ̂(X)

]−1E
[
Ỹ ϕ̂(X)

]
− ÊnO

[
ϕ̂(X)ϕ̂(X)

]−1ÊnO

[
Ỹ ϕ̂(X)

]∥∥∥
2

= Op(rϕ(nO) + 1/
√
nO)
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Table 1: Hyperparameters of models in simulated data experiments.
Method Model(s) Algorithm Hyperparameter Value

Algorithm 1 Compliance Random Forest max_depth 3
(scikit-learn) min_samples_leaf 50

Algorithm 1 Outcomes Random Forest max_depth 5
(scikit-learn) min_samples_leaf 5

Algorithm 2 Representation Neural Network activation ELU
CATE (PyTorch) hidden units 2
Compliance network depth 5

weight_decay 0.02
optimizer Adam
learning rate 0.01
batch size 2000
epochs 1000

Thus,
∥∥τO− τ̂O

∥∥
L2

is Op(rϕ(nO)+1/
√
nO). Next, we build upon the insights provided by the Proof

of Theorem 2. We note that we can apply the same analysis as in the Proof of Theorem 2 by using ϕ̂ in-
stead of ϕ and everything goes through except the λ3 term which is not 0 since ν depends on ϕ and not
ϕ̂. Thus, the convergence rate of ∥ν̂−ν∥2 will be Op

(
rγ(nE) + rπZ

(nE) + rτO (nO) + 1/
√
nE

)
=

Op

(
rγ(nE) + rπZ

(nE) + rϕ(nO) + 1/
√
nE + 1/

√
nO

)
plus a term that depends on the deviation

between ϕ̂ and ϕ. This term is given by:

λ3 =
∥∥∥E [w(X)2ϕ̂(X)ϕ̂(X)T

]−1

· E
[(
Y Z(1− πZ(X))− Y (1− Z)πZ(X)− w(X)τO(X)

)
w(X)ϕ̂(X)

]
− ν
∥∥∥
2

=
∥∥∥E [w(X)2ϕ̂(X)ϕ̂(X)T

∣∣∣γ(X) ̸= 0
]−1

E
[
w(X)2ϕ̂(X)ϕ(X)T ν

∣∣∣γ(X) ̸= 0
]
− ν
∥∥∥
2

(Lemma 1)

=
∥∥∥E [w(X)2ϕ̂(X)ϕ̂(X)T

∣∣∣γ(X) ̸= 0
]−1

E
[
w(X)2ϕ̂(X)(ϕ(X)− ϕ̂(X))T ν

∣∣∣γ(X) ̸= 0
] ∥∥∥

2

= Op(rϕ(nO))

However, this term simply gets absorbed into Op

(
rγ(nE) + rπZ

(nE) + rϕ(nO) + 1/
√
nE + 1/

√
nO

)
.

Thus, we obtain the desired results:

∥ν̂ − ν∥2 = Op (rγ(nE) + rπZ
(nE) + rϕ(nO) + 1/

√
nE + 1/

√
nO) ,

and

∥τ̂ − τ∥L2 = Op (rγ(nE) + rπZ
(nE) + rϕ(nO) + 1/

√
nE + 1/

√
nO) .

C Additional Experimental Details

C.1 Simulation Studies

Implementation Details: The results for the parametric extension from Section 5.1 were generated
on a consumer laptop equipped with a 13th Gen Intel Core i7 CPU. The execution took approximately
1.5 minutes using 20 concurrent workers. In contrast, the representation learning outcomes were
derived using an NVIDIA Tesla T4 GPU on Google Colab [19]. The execution took roughly 1.5 hours,
with half the time spent on Algorithm 2 and the other half on learning τ̂E(x) over 100 iterations.

The Random Forest (RF) models used in Algorithm 1 employ the RandomForestRegressor and
RandomForestClassifier algorithms from the scikit-learn [42] Python library. For the feed-
forward neural networks within the representation learning component, we utilize the nn module
from the PyTorch package [41]. Details regarding the hyperparameters for these models are provided
in Table 1.
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Table 2: MSE ± SD for estimators in high-dimensional DGP
τ̂O(x) τ̂E(x) τ̂(x)

d = 5 1.40± 0.09 3.97± 1.21 0.40± 0.07
d = 10 3.25± 0.15 7.70± 1.54 1.25± 0.20
d = 20 9.32± 0.51 19.2± 2.58 4.05± 0.68
d = 50 37.1± 0.94 43.2± 2.89 9.39± 1.64

Table 3: 401(k) dataset description
Name Description Type

age age continuous covariate
inc income continuous covariate
educ years of completed education continuous covariate
fsize family size continuous covariate
marr marital status binary covariate
two_earn whether dual-earning household binary covariate
db defined benefit pension status binary covariate
pira IRA participation binary covariate
hown home ownership binary covariate
e401 401(k) eligibility binary instrument
p401 401(k) participation binary treatment
net_tfa net financial assets continuous outcome

We configured the parameters for the Random Forest (RF) models based on the theoretical guidance
outlined in [44]. For the neural networks, we implemented early stopping using a validation dataset
that constituted 20% of the total generated datasets.

Result for High-Dimensional DGP: We perform additional experiments to highlight the effectiveness
of our method in higher-dimensional settings. To this aim, we modify the DGP in Section 5.1 to
include d features Xd ∈ Rd, with both baselines and bias depending on all features as follows:

Y = 1 +A+X + 2AβTX + 0.5X2
1 + 0.75AX2

1 + U + 0.5ϵY

U | X,A ∼ N
(
γTX (A− 0.5) , 0.75

)
where the coefficients β, γ ∈ [−1, 1]d are set at random at the beginning of the simulation. In this
setting, the bias function is given by b(x) = −γTx. We leave all other settings and parameters
(including nO = nE = 5, 000) unchanged and perform parametric extrapolation using Algorithm 1.

In Table 2, we report the mean squared error (MSE) and standard deviation (SD) of predictions
on a fixed sample of 1,000 points drawn from the same distribution as X , over 100 iterations and
for various dimensions (d ∈ 5, 10, 20, 50). The high MSE of the IV estimator τ̂E(x) reflects the
challenges of estimating compliance in high-dimensional settings. Likewise, the observational data
estimator τ̂O(x) shows clear bias. In contrast, the combined data estimator τ̂(x) from Algorithm 1
significantly outperforms both, demonstrating improved accuracy in this high-dimensional context.

C.2 Impact of 401(k) Participation on Financial Wealth

Implementation Details: The dataset from [11] is comprised 9,915 observations with 9 covariates:
age, income, education, family size, marital status, two-earner household status, defined benefit
pension status, IRA participation, and home ownership indicators. We describe the features of the
401(k) dataset in Table 3.

Given the heavy-tailed distribution of net worth measures, we perform a pre-processing step to
remove outliers. Specifically, we eliminate the top and bottom 2.5% of observations, effectively
narrowing the range of potential outcomes from [−0.5× 106, 1.5× 106] to [−1.4× 104, 1.34× 105].
This adjustment leaves us with 9,419 observations, which are then evenly distributed between the
observational and experimental datasets. We find that this procedure improves the stability of
regression and classification algorithms across different random data splits.
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(c) Ê[Y O | AO = 1, XO] Shap Plot

Figure 4: Characteristics of the 401(k) dataset derived from the first stage of Algorithm 1. (4a):
Histogram of compliance scores for x ∈ XE . (4b): Shapley plot [37] for the compliance model in
the IV dataset with features arranged in decreasing order by feature importance. (4c): Shapley plot
for the estimated outcome model Ê[Y O | AO = 1, XO] in the observational dataset with features
arranged in decreasing order by feature importance.

Table 4: MSE ± SD across different 401(k) data splits. Age: 40, Income: $30,000, Single

Educ τ̂O (in 1,000$) τ̂E (in 1,000$) τ̂ (in 1,000$)
8 11.9± 2.18 10.0± 2.23 9.83± 2.22
10 11.8± 2.17 10.2± 2.42 9.99± 2.18
12 11.8± 2.22 9.88± 2.36 10.2± 2.20

Table 5: MSE ± SD across different 401(k) data splits. Age: 40, Income: $30,000, Married

Educ τ̂O (in 1,000$) τ̂E (in 1,000$) τ̂ (in 1,000$)
8 11.3± 2.40 9.49± 2.23 9.54± 2.50
10 11.3± 2.40 9.63± 2.40 9.59± 2.38
12 11.2± 2.41 9.93± 2.39 9.65± 2.29

This dataset has previously been analyzed using Random Forest algorithms in [12]. Con-
sistent with this earlier work, we employ the same models (RandomForestRegressor and
RandomForestClassifier from scikit-learn) and use identical hyperparameters (n_estimators
= 100, max_depth = 6, max_features = 3, min_samples_leaf = 10) for various regression and classifi-
cation tasks outlined in Algorithm 1. For the second stage of Algorithm 1, we use a Lasso regressor
from scikit-learn with a penalty of α = 0.07 selected via 5-fold cross-validation.

In Figure 4, we display several characteristics of the 401(k) dataset derived from the first stages
of Algorithm 1. In particular, we illustrate the spread in compliance scores in IV dataset, as well
as the impact of important features on the predictions of the compliance and outcome models,
respectively. As noted in the main text, the compliance scores are relatively large and range between
0.49 and 0.90 (mean=0.70). Furthermore, the primary features influencing the compliance score
model include income, age, and education. In contrast, the features impacting the outcome model
Ê[Y O | AO = 1, XO] are IRA participation, income, and age, with education having a significantly
lesser effect. This motivated us to investigate how education influences the derived CATEs.

Quantifying Uncertainty Across Data Splits: We quantify our claims for the 401(k) study by
repeating the experiment across 100 different (O,E) splits of the original data. We calculate the
means and standard deviations of the treatment effects by years of education for the two examples
described in the paper, with the results shown in Table 4 and Table 5. We note that the original
trend (biased observational estimates, accurate extrapolation to the no-compliance region) is largely
preserved, and our method demonstrates the ability to interpolate well on average in the artificially
introduced non-compliance region. However, the uncertainty, as reflected by the large standard
deviations, is substantial enough that the results are not statistically significant, which limits the
strength of the conclusions we can draw from this experiment (unfortunately!). This is most likely
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due to the prevalence of outliers, as net worth follows a heavy-tailed distribution, and RF regressors
tend to overfit to these extreme values.

D Limitations and Societal Impacts of Our Work

Our methodology hinges on several key assumptions, and violations can significantly affect the
accuracy and reliability of our estimates. First, the standard IV assumptions (Assumption 1) must
hold. If the instrument directly affects the outcome, is correlated with unobserved confounders, or is
weak across all strata of covariates, our estimates may be biased and unreliable. Some of these issues
can be mitigated in experimental settings where the instrument is fully randomized. Additionally, the
unconfounded compliance assumption requires that compliance is independent of potential outcomes
given the covariates. Violations here can also lead to biased estimates if unrecorded explanatory
variables affect both outcomes and compliance. Lastly, our method relies on realizability assumptions
regarding the bias function. If these assumptions do not hold, our estimates might be biased.

The societal impacts of our method stem from potential inaccuracies in treatment effect estimates and
their subsequent use. Inaccurate treatment effect estimates could lead to a range of adverse outcomes,
from a diminished user experience on online platforms to less effective healthcare recommendations,
economic and public policies. Furthermore, while accurate estimates can provide substantial benefits,
they must be used responsibly to avoid unintended consequences such as privacy concerns or potential
biases in decision-making. It is thus crucial to apply these methods with careful consideration of
ethical implications and societal impacts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our proposed algorithms and corresponding theoretical claims are presented
in Section 4. Our empirical results are shown in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Appendix D, with an emphasis on
the key assumptions that enable our approach and the potential impact of these assumptions
on its applicability.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions in Assumption 1, Assumption 2, and
Assumption 3. We present the complete (and correct) proofs in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the information necessary for replicating the experimental results
in Section 5 and Appendix C. This includes information about data generation and access,
methods used for estimation, validation, hyperparameter selection, parameters for Monte
Carlo simulations, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the replication code at https://github.com/CausalML/
Weak-Instruments-Obs-Data-CATE, along with instructions (see README.md docu-
ment). The real-word 401(k) dataset is available through the doubleml [7] Python package.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include these details in Section 5 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experiments include standard errors obtained over 100 dataset simulations
(see Section 5).
Guidelines:

26

https://github.com/CausalML/Weak-Instruments-Obs-Data-CATE
https://github.com/CausalML/Weak-Instruments-Obs-Data-CATE
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the required computational resources in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviews the ethics guidelines at https://neurips.cc/public/
EthicsGuidelines and confirm that our work adheres to them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We discuss the societal impacts of our work in Appendix D
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or models not already freely available on the web.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The only asset not created by the authors is the 401(k) dataset which is
distributed with the doubleml [7] Python package.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide documentation along with the assets in the supplementary material
(see README.md).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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