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Abstract

We study the problem of estimating the average treatment effect (ATE) in adap-
tive experiments where treatment can only be encouraged—rather than directly
assigned—via a binary instrumental variable. Building on semiparametric effi-
ciency theory, we derive the efficiency bound for ATE estimation under arbitrary,
history-dependent instrument-assignment policies, and show it is minimized by a
variance-aware allocation rule that balances outcome noise and compliance variabil-
ity. Leveraging this insight, we introduce AMRIV — an Adaptive, Multiply-Robust
estimator for Instrumental-Variable settings with variance-optimal assignment.
AMRIV pairs (i) an online policy that adaptively approximates the optimal al-
location with (ii) a sequential, influence-function–based estimator that attains
the semiparametric efficiency bound while retaining multiply-robust consistency.
We establish asymptotic normality, explicit convergence rates, and anytime-valid
asymptotic confidence sequences that enable sequential inference. Finally, we
demonstrate the practical effectiveness of our approach through empirical studies,
showing that adaptive instrument assignment, when combined with the AMRIV es-
timator, yields improved efficiency and robustness compared to existing baselines.

1 Introduction

Adaptive experimentation enables efficient estimation of treatment effects in sequential settings by
adjusting assignment strategies based on accumulating data. Compared to traditional randomized
controlled trials (RCTs), adaptive designs can reduce estimation variance, accelerate discovery, and
limit exposure to ineffective or costly interventions. These methods are now widely used across
domains—from medicine to technology—and have been formally endorsed by the U.S. Food and
Drug Administration [20], driving both practical adoption and theoretical advances [13, 22, 25].

In many important settings, however, direct treatment assignment is not feasible or ethical. In
medical and behavioral studies, researchers may only be able to encourage behaviors (e.g., physical
activity) rather than enforce them. Online platforms may launch digital campaigns to encourage user
actions–such as trying new features or subscribing to services–but cannot compel engagement. In
such cases, noncompliance arises: individuals self-select into treatment based on unobserved factors
that also affect outcomes, rendering standard estimators biased due to confounding.

To address this challenge, researchers often use instrumental variables (IVs)— randomized assign-
ments that affect treatment uptake but not outcomes directly. However, while IV-based methods
are well-established in static settings, and adaptive designs have been developed when treatment is
assignable [13, 25, 26], adaptive experimentation with IVs remains largely unexplored. This creates a
critical need for methods that can adaptively assign instruments and estimate treatment effects under
noncompliance and unobserved confounding.
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This paper addresses this gap. We consider the problem of estimating the average treatment effect
(ATE) in a sequential experiment where the experimenter can assign only a binary instrument, while
the binary treatment is determined endogenously. We build on the semiparametric framework of
Wang and Tchetgen Tchetgen [44], which identifies the ATE under an unconfounded compliance
assumption and provides a multiply robust, efficient influence-function–based estimator. Unlike prior
IV methods—which often target the local average treatment effect (LATE), assume structural equation
models (SEMs), or lack robustness and efficiency—this framework enables ATE identification and
efficient estimation without strong modeling assumptions. However, existing results apply only to
static designs with fixed policies. We extend this framework to the adaptive setting. Specifically:

• We derive the semiparametric efficiency bound and characterize the optimal adaptive
policy that minimizes this bound through a covariate-dependent instrument assignment.

• We introduce AMRIV, an Adaptive, Multiply Robust estimator for IV settings, which applies a
sequential, plug-in version of the efficient influence function evaluated under the learned policy.

• We provide strong theoretical guarantees, including asymptotic normality, convergence rates,
multiply robust consistency, and time-uniform asymptotic confidence sequences for valid infer-
ence at arbitrary stopping times.

• We demonstrate practical effectiveness in both synthetic and semi-synthetic settings, showing
improved efficiency and robustness over non-adaptive baselines and alternative methods.

In contrast to prior work on adaptive design with instruments [3, 9, 21, 50], our method focuses
on point estimation of the ATE, achieves semiparametric efficiency, and supports multiply robust
inference under adaptive assignment. To our knowledge, this is the first method to bring the full
suite of modern semiparametric tools—efficient influence functions, adaptive policy learning, robust
plug-in estimation, and anytime-valid inference—to the adaptive IV setting with noncompliance.

2 Related Work

We provide a brief overview of related work here, with a more detailed discussion in Appendix A.

IV-Based Estimation of ATE. ATE identification in IV settings has traditionally relied on struc-
tural equation models (SEMs) that impose parametric assumptions on the outcome and treatment
assignment mechanisms. More recent work has proposed flexible alternatives—such as DeepIV [23],
kernel IV [40], and orthogonal moment methods [6, 42]—that enable conditional effect estimation in
high-dimensional or nonlinear settings. However, these approaches do not directly target robustness
or semiparametric efficiency for the ATE. We instead build on the framework of Wang and Tchet-
gen Tchetgen [44], which establishes point identification of the ATE via an unconfounded compliance
assumption without requiring SEMs. Their influence-function–based estimator achieves semipara-
metric efficiency and is multiply robust, remaining consistent under partial nuisance misspecification.
We extend this framework to the adaptive setting and use it as the foundation for our estimator.

Adaptive ATE Estimation. Recent work has established a rich theory for adaptive estimation of the
ATE when treatments can be directly assigned. Kato et al. [25] introduced the A2IPW estimator for
variance-optimal adaptive assignment; Kato et al. [26] extended this to settings with estimated policies
and nuisance functions, and Cook et al. [13] further incorporated policy truncation and provided the
first asymptotically valid confidence sequences. We integrate these advances—adaptive nuisance
estimation, sample splitting, policy truncation, and time-uniform inference—into our estimator to
enable efficient, robust learning in experiments with noncompliance.

Adaptive Experimentation with IVs. A small but growing literature explores adaptive design in
settings where only an instrument, rather than the treatment, can be assigned. Closest to our work is
Chandak et al. [9], who propose a practical influence-function–based procedure to reduce prediction
error in nonparametric IV regression. However, they focus on prediction accuracy and do not address
semiparametric efficiency or robustness. Other approaches focus on partial identification [3], adaptive
data acquisition [21], or regret minimization in bandit-style settings with endogeneity [16, 50]. In
contrast, our goal is to enable efficient and robust adaptive ATE estimation under noncompliance, and
we are the first to construct an efficient, multiply robust estimator in this setting.

Additional related work on semiparametric inference, multiply robust estimation, and confidence
sequences is discussed in detail in Appendix A.
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3 Background and Setup

We consider the problem of estimating the average treatment effect (ATE) of a binary treatment
A ∈ {0, 1} on a real-valued outcome Y ∈ R, in the presence of unobserved confounding, within
an adaptive experimental setting. We adopt the potential outcomes framework, where each unit is
associated with two potential outcomes, Y (0) and Y (1), corresponding to the outcomes under control
and treatment, respectively. However, only the realized outcome Y = Y (A) is ever observed.

Each unit is also associated with covariates X ∈ Rm, and we assume that the random variables
(X,Y (0), Y (1)) are jointly distributed according to some unknown distribution P . Our goal is to
estimate the ATE given by:

τ := E[Y (1)]− E[Y (0)].

Because direct treatment assignment may be infeasible, we rely on a binary instrumental variable
Z ∈ {0, 1} that influences treatment uptake. The instrument can be interpreted as a recommendation
or encouragement—something the experimenter can assign, unlike the treatment itself. We use
Y (a, z) to denote the potential outcome under treatment a ∈ {0, 1} and instrument z ∈ {0, 1}, and
define A(z) as the potential treatment that would be taken under instrument assignment z ∈ {0, 1}.

The experiment proceeds over T ∈ N rounds. At each round t, a new unit with covariates Xt is drawn
from P . The experimenter observes Xt and selects an instrument value Zt ∼ πt(· | Xt,Ht−1),
where πt is an adaptive policy that depends on the current covariates Xt and past observations

Ht−1 := {(X1, Z1, A1, Y1), . . . , (Xt−1, Zt−1, At−1, Yt−1)}.
This allows the instrument-assignment policy to evolve over time based on accumulated data. Fol-
lowing the instrument assignment Zt, the treatment At = A(Zt) is realized, and the outcome
Yt = Y (At, Zt) is observed. The full observation at time t is thus (Xt, Zt, At, Yt). After T rounds,
the experimenter estimates the ATE from accumulated data HT = {(Xi, Zi, Ai, Yi)}Ti=1.

To identify the ATE under endogenous treatment selection (that may be influenced by unobserved
confounders), we adopt standard instrumental variable assumptions, as well as the unconfounded
compliance condition introduced in Wang and Tchetgen Tchetgen [44]. We summarize these below.
Assumption 1 (Standard IV Assumptions). The following properties hold: (Exclusion) Y (a, z) =
Y (a)—the instrument affects the outcome only through the treatment; (Independence) Z ⊥⊥ U | X—
the instrument is independent of unobserved confounders U given covariates; and (Relevance)
Cov(Z,A | X) ̸= 0—the instrument has an effect on treatment uptake for almost every X .
Assumption 2 (Unconfounded Compliance, from [44]). The treatment effect is independent of
compliance status given covariates: Y (1)− Y (0) ⊥ A(1)−A(0) | X .

Assumption 1 is standard in the IV literature and ensures instrument validity. The independence
assumption can often be satisfied by design, e.g., via randomization. While sufficient for identifying
the local average treatment effect (LATE), these assumptions do not identify the ATE under effect
heterogeneity or treatment endogeneity. To enable ATE identification, we invoke Assumption 2
from Wang and Tchetgen Tchetgen [44], which assumes the treatment effect is mean-independent of
compliance type given covariates, ruling out interactions with unobserved confounding.

With Assumption 1 and 2, the ATE can be point-identified. For notational convenience, we define the
instrument-induced outcome and treatment models µY (z,X) := E[Y | Z = z,X] and µA(z,X) :=
E[A | Z = z,X] for z ∈ {0, 1}. The ATE can then be expressed as (Theorem 1 from [44]):

τ = EX

[
µY (1, X)− µY (0, X)

µA(1, X)− µA(0, X)

]
:= EX

[
δY (X)

δA(X)

]
, (1)

where δY (X) and δA(X) denote the instrument-induced shifts in outcome and treatment, respectively.
We refer to δA(X) as the compliance score, representing the instrument’s effect on treatment uptake.

In the non-adaptive setting, where the instrument assignment policy is fixed over time— i.e.,
πt(1 | X,Ht−1) ≡ π(X) — Wang and Tchetgen Tchetgen [44] (Theorem 5) derive the
efficient influence function (EIF) for the ATE estimator in Equation 1. Let π(x), η(x) :=
{µY (0, x), µA(0, x), δA(x), δ(x)} denote the nuisances, where δ(X) := δY (X)/δA(X). The (Re-
centered) EIF is then given by

ϕ(X,Z,A, Y ;π, η) (2)

=
2Z − 1

Zπ(X) + (1− Z)(1− π(X))

1

δA(X)

[
Y −Aδ(X)− µY (0, X) + µA(0, X)δ(X)

]
+ δ(X).
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The corresponding estimator—known as the multiply robust IV estimator (MRIV) [18, 44]—uses
plug-in estimates of nuisance functions within the recentered efficient influence function. It attains
the semiparametric efficiency bound when all nuisances are correctly specified and remains consistent
under partial misspecification.

We extend this framework to the adaptive setting, where the instrument assignment policy πt evolves
with accumulating data. We characterize the optimal adaptive policy that minimizes asymptotic vari-
ance and develop AMRIV, an Adaptive Multiply Robust IV estimator that combines adaptive policy
learning with sequential influence-function–based estimation. Our method achieves semiparametric
efficiency, ensures multiply robust consistency, and enables valid time-uniform inference.

Notation: We write πt(Xt | Ht) := πt(1 | Xt,Ht) for the probability of assigning Zt = 1 given
covariates and history. The L2 norm of a function f is ∥f∥2 := EP [f(X)2]1/2, and f̂t denotes an
estimate of f based on t samples. We use Ê to denote empirical expectations computed from data.

4 Efficiency Bounds and Optimal Instrument Assignment

To guide optimal experiment design under the IV setting, we derive the semiparametric efficiency
bound for ATE estimation under a fixed instrument policy π(X). This characterizes the variance-
minimizing allocation strategy and motivates our adaptive estimator.
Theorem 1 (Semiparametric Efficiency Bound). Under Assumption 1 and 2, the semiparametric
efficiency bound for estimating the ATE τ is given by

Veff(π) := E
[

1

δA(X)2

(
σ2(1, X)

π(X)
+
σ2(0, X)

1− π(X)

)
+ (δ(X)− τ)

2

]
, (3)

where σ2(z,X) = Var(Y −Aδ(X) | Z = z,X).
Corollary 2 (Optimal Instrument Assignment). The assignment policy π∗(X) that minimizes the
efficiency bound in Theorem 1 is given by

π∗(X) =

√
σ2(1, X)√

σ2(1, X) +
√
σ2(0, X)

. (4)

Proofs of Theorem 1 and Corollary 2 appear in Appendix C. Unlike standard adaptive ATE estimation,
the optimal policy π∗(X) prioritizes arms with higher residual variance, balancing both outcome and
compliance noise to minimize estimator variance.

Connection to Neyman Allocation. In the special case of perfect compliance—i.e., when A = Z—
the treatment is fully determined by the (conditionally) randomized instrument and our setting
becomes the adaptive ATE estimation scenario. In this setting, Var(Y − Aδ(X) | Z = z,X) =
Var(Y − Aδ(X) | A = z,X) = Var(Y | A = z,X) and thus the optimal allocation reduces to√

Var(Y |A=1,X)√
Var(Y |A=0,X)+

√
Var(Y |A=1,X)

which exactly matches the classical Neyman allocation for min-

imizing the variance of a difference-in-means estimator [25, 33]. This highlights that our policy
generalizes Neyman allocation to settings with noncompliance and endogenous treatment, adjusting
for both outcome and compliance-driven noise.

0.0 0.5 1.0
A(x)

0.35

0.40

0.45

0.50

* (
x)

Neyman Allocation

Adaptive policy vs. compliance
* (x)

Figure 1: Optimal policy π∗(X) as
a function of compliance δA(X).

Motivating Illustration. Consider an example with one-
sided noncompliance—treatment is only accessible to those
who receive the instrument, so µA(0, X) = 0. This cap-
tures scenarios such as vaccine access, product rollouts, or
behavioral nudges. Let compliance vary with X ∈ R via
δA(x) = µA(1, x) = σ(−2x), and let outcomes follow
Y = f(A,X) + uA+ ϵA, where u is a fixed unobserved con-
founder and ϵA ∼ N (0, A+ 4(1−A)), with higher variance
in the control arm. As shown in Figure 1, the optimal policy
π∗(X) approaches Neyman allocation when δA(X) → 1, but
shifts toward uniform allocation when δA(X) → 0. This re-
flects a key design intuition: under low compliance, assigning
more units to Z = 1 compensates for scarce treatment uptake, helping preserve estimator efficiency.
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5 Adaptive Estimation of the Average Treatment Effect

We propose an adaptive framework for estimating the ATE in sequential experiments with a binary
instrument. Our goal is to minimize the semiparametric efficiency bound from Theorem 1 by
combining: (1) instrument assignment via a data-driven policy πt(Xt | Ht−1) that approximates
the optimal allocation π∗(X); and (2) treatment effect estimation using an adaptive plug-in version
of the multiply robust estimator from Equation 2. Although the theory assumes per-round updates,
the method also applies in batch settings with fewer updates. We detail both components below.

5.1 Adaptive Instrument Assignment

To stabilize nuisance estimation, we begin with a burn-in phase of T0 < T rounds using a fixed policy
πinit(X), such as uniform randomization. From round T0 + 1 onward, instruments are assigned via a
data-driven policy πt(X | Ht−1) that approximates the optimal allocation in Corollary 2. Specifically,
we compute a plug-in estimate π̃t(X | Ht−1) as

π̃t(X | Ht−1) :=

√
σ̂2
t−1(1, X)√

σ̂2
t−1(0, X) +

√
σ̂2
t−1(1, X)

, (5)

where σ̂2
t−1(z,X) is an estimate of the conditional residual variance Var(Y −Aδ(X) | Z = z,X)

based on data in Ht−1. We then apply a truncation step to π̃t(X | Ht−1) (described below) to obtain
the final assignment policy πt(X | Ht−1) used at time t.

Residual–variance estimation. We estimate σ̂2
t−1(z,X) using the decomposition

Var(Y −Aδ(X) | Z = z,X) = E[(Y −Aδ(X))2 | Z = z,X]−
(
µY (0, X)− µA(0, X) δ(X)

)2
.

We proceed in two stages: (i) fit µ̂Y
t−1(0, X), µ̂A

t−1(0, X) and δ̂t−1(X) using Ht−1; (ii) form residuals
R̂t−1 = Y −A δ̂t−1(X) and regress R̂2

t−1 on (Z,X) to obtain ŝt−1(z,X) := Ê[R̂2
t−1 | Z = z,X].

Unbiased two-stage estimation via cross-fitting. To mitigate finite-sample bias in estimating
σ̂2
t−1(z,X), we apply the sequential cross-fitting scheme of Waudby-Smith et al. [45]. Thus, we split

Ht−1 into two temporal folds H(j)
t−1 = {(Xi, Zi, Ai, Yi) : i ∈ [t − 1], i mod 2 = j}, j ∈ {0, 1},

fit δ̂t−1 on one and compute residuals R̂2
t−1 on the other, and vice-versa. The combined residuals

are used to regress R̂2
t−1 on (Z,X) to estimate ŝt−1(z,X). Since µ̂Y

t−1 and µ̂A
t−1 do not depend on

other nuisances, they are learned on the full history Ht−1.

Nuisance learners. Any sequentially consistent nonparametric regressor can be used for µ̂Y
t−1, µ̂

A
t−1,

and ŝt−1, e.g. k-NN [48], kernel smoothers [36], random forests [43], or neural nets [39]. µ̂A
t−1 may

also be estimated via these methods or a classifier such as logistic regression. We compute δ̂t−1(X) =

δ̂Yt−1(X)/δ̂At−1(X), where δ̂Yt−1 is estimated via either a difference of regressions µ̂Y
t−1(1, X) −

µ̂Y
t−1(0, X) or a direct IPW-style regression Ê

[
Y Z

πt−1(X) −
Y (1−Z)

1−πt−1(X) | X
]
. An estimate of δ̂At−1(X)

is obtained analogously by replacing Y with A.

To guarantee non-negativity of the estimated variances, we define σ̂2
t−1(z,X) as

σ̂2
t−1(z,X) =

{{
ŝt−1(z,X)− (µ̂Y

t−1(0, X)− µ̂A
t−1(0, X) δ̂t−1(X))2

}
if {· · · } > 0

ε otherwise
(6)

for a small constant ε > 0.

Truncation for Finite-Sample Stability. Following recent work on adaptive ATE estimation without
endogenous treatment assignment (e.g., [13, 14, 32]), we apply a truncation scheme to stabilize the
assignment policy π̃t(X | Ht−1). After computing the raw plug-in policy π̃t(X | Ht−1) via Eq. (5),
we define the truncated policy πt(X | Ht−1) as

πt(X | Ht−1) := min

{
1− 1

kt
,max

{
1

kt
, π̃t(X | Ht−1)

}}
, (7)

where kt ∈ [2,∞) is a truncation parameter satisfying kt → ∞ as t → ∞. Truncation ensures
that the instrument assignment probabilities remain bounded away from 0 and 1, thereby improving
finite-sample stability and leading to better theoretical guarantees.
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Algorithm 1 AMRIV: Adaptive Multiply Robust IV Estimation

Require: Burn-in period T0; initial policy πinit(X); regression/classification learners for µY (z,X),
µA(z,X), δ(X), δA(X), s(z,X).

1: for t = 1 to T do
2: Observe covariates Xt.
3: if t ≤ T0 then
4: Assign Zt ∼ Bern(πinit(Xt)).
5: else
6: Estimate nuisance functions µ̂Y

t−1(0, X), µ̂A
t−1(0, X), δ̂t−1(X), and ŝt−1(z,X) from Ht−1

using cross-fitting. Compute σ̂2
t−1(z,X) using Eq.(6).

7: Compute plug-in assignment probability: π̃t(X | Ht−1) =

√
σ̂2
t−1(1,X)√

σ̂2
t−1(0,X)+

√
σ̂2
t−1(1,X)

.

8: Apply truncation to obtain πt(X | Ht−1) := min
{
1− 1

kt
,max

{
1
kt
, π̃t(X | Ht−1)

}}
.

9: Assign Zt ∼ Bern(πt(Xt | Ht−1)).
10: Observe instrumented treatment At = A(Zt) and outcome Yt = Y (At).
11: Construct η̂t = {µ̂Y

t−1(0, X), µ̂A
t−1(0, X), δ̂At−1(X), δ̂t−1(X)} by estimating (or reusing)

nuisance functions via cross-fitting.
12: Compute ϕt = ϕ(Xt, Zt, At, Yt;πt, η̂t) using Eq. (9).
13: return τ̂AMRIV

T = 1
T

∑T
t=1 ϕt.

5.2 AMRIV: Adaptive Multiply Robust Estimation of the ATE

We now introduce our estimator, AMRIV, which adaptively estimates the ATE using the recentered
efficient influence function in Eq. (2) evaluated on sequentially updated plug-in estimates of nuisance
functions. The estimator is defined as

τ̂AMRIV
T :=

1

T

T∑
t=1

ϕ(Xt, Zt, At, Yt;πt, η̂t), (8)

where η̂t = {µ̂Y
t−1(0, X), µ̂A

t−1(0, X), δ̂At−1(X), δ̂t−1(X)} denotes plug-in estimates of the nuisance
functions at time t, constructed solely from the past data Ht−1 (Note: the instrument assignment
policy πt(X | Ht−1), defined by the experimenter based on the estimated optimal rule from Sec-
tion 5.1, is treated as known and does not require further estimation from data). This construction
confers the estimator τ̂AMRIV

T a near-martingale structure, that is, it can be written as the sum of a
true martingale difference sequence and a remainder term of order op(T−1/2), enabling, as we will
show in Section 6, valid asymptotic inference under sequential dependence.

Nuisance Estimation. The nuisance functions µ̂Y
t−1(0, X), µ̂A

t−1(0, X), δ̂At−1(X), δ̂t−1(X) can be
estimated using any flexible nonparametric regression method applied to the historical data Ht−1. To
reduce computational overhead, we can reuse the estimates of µ̂Y

t−1(0, X) and µ̂A
t−1(0, X) previously

obtained for instrument assignment in Section 5.1. Similarly, the estimate of δ̂t−1(X) can be formed
by averaging the cross-fitted estimates δ̂(0)t−1 and δ̂(1)t−1, trained on the two data folds H(0)

t−1 and H(1)
t−1,

respectively. The only remaining component is δ̂At−1(X), which must be estimated separately if it
was not already computed as part of the δ̂t− 1(X) estimation pipeline.

For completeness, the final estimate of the (R)EIF at time t is given by

ϕ(Xt, Zt, At, Yt;πt, η̂t) =
2Zt − 1

Ztπt(Xt | Ht−1) + (1− Zt)(1− πt(Xt | Ht−1))

1

δ̂At−1(Xt)

·
[
Yt −Atδ̂t−1(Xt)− µ̂Y

t−1(0, Xt) + µ̂A
t−1(0, Xt)δ̂t−1(Xt)

]
+ δ̂t−1(Xt) (9)

where all quantities are constructed from Ht−1. The full procedure is summarized in
Algorithm 1. Unlike prior adaptive ATE methods without IVs, the estimator τ̂AMRIV

T =
1
T

∑T
t=1 ϕ(Xt, Zt, At, Yt;πt, η̂t) cannot be written as a martingale difference sequence. Hence,

standard MDS central limit theorems do not apply directly, and we must instead decompose the
estimator to recover a suitable martingale structure.

6



6 Theoretical Guarantees

This section provides theoretical guarantees for the AMRIV estimator. We establish its asymptotic
normality, characterize its convergence rates, and demonstrate its multiply-robust consistency. Fur-
thermore, in Appendix B, we consider the sequential inference setting and derive asymptotically-valid,
time-uniform confidence sequences for the AMRIV estimator.

6.1 Efficiency and Asymptotic Normality of the AMRIV Estimator

We start by establishing the asymptotic properties of the AMRIV estimator τ̂AMRIV
T . We first introduce

the following assumption:
Assumption 3 (Bounded Outcomes and Nuisances). The potential outcomes and nuisance function
estimates are uniformly bounded. That is, there exists a constant C > 0 such that, for all t and x:
|Yt(0)|, |Yt(1)| ≤ C, |µ̂Y

t (0, x)|, |µ̂A
t (0, x)|, |δ̂t(x)|, |δ̂At (x)|−1 ≤ C.

This boundedness assumption is standard in influence-function-based ATE estimation and ensures
stability of the estimator. With this assumption in place, we now state our main result on the
asymptotic efficiency of the AMRIV estimator.
Theorem 3 (Asymptotic Normality of the AMRIV Estimator). Suppose Assumptions 1 to 3 hold and
there exists a non-adaptive policy π(X) ∈ [ϵ, 1−ϵ] for some ϵ > 0 such that the nuisances estimates η̂t
and the adaptive assignment policy πt(X | Ht−1) are L2-consistent relative to the truncation sched-
ule, i.e. kt∥f̂t−1 − f∥2 = op(1) and kt∥πt − π∥2 = op(1) for f ∈ {µY (0, ·), µA(0, ·), δ(·), δA(·)}.
Furthemore, assume ∥δ̂t−1 − δ∥2∥δ̂At−1 − δA∥2 = op(t

−1/2). Then, the AMRIV estimator is asymp-
totically normal:

√
T
(
τ̂AMRIV
T − τ

) d−→ N (0, Veff(π)) , (10)

where Veff is defined in Theorem 1. In particular, if we have π(X) = π∗(X), then τ̂AMRIV
T is

semiparametrically efficient.

The key insight behind Theorem 3 is that the AMRIV estimator admits the following near-
martingale decomposition:

√
T (τ̂AMRIV

T − τ) =
√
T
(

1
T

∑T
t=1 zt − τ

)
+

√
T
(

1
T

∑T
t=1mt

)
,

where zt = ϕ(Xt, Zt, At, Yt;πt, η) is a martingale difference sequence (MDS), and mt =
ϕ(Xt, Zt, At, Yt;πt, η̂t)− ϕ(Xt, Zt, At, Yt;πt, η) is an asymptotically vanishing term that captures
the impact of estimating the nuisance functions. The first term satisfies a central limit theorem
for MDS under standard Lindeberg-type conditions [49], while the second is controlled by the L2-
consistency of the nuisance estimates. We formalize this in Appendix D. Importantly, this result holds
under mild assumptions: we only require L2 convergence (no pointwise convergence or Donsker
conditions Bickel et al. [7]), bounded outcomes and nuisance estimates, and L2-consistency of the
nuisance components w.r.t. the truncation schedule. This allows AMRIV to accommodate flexible,
data-dependent policies and sequential nuisance estimation.

The truncation schedule kt plays a central role by ensuring positivity of πt(X)—crucial for variance
control—while still allowing πt to approach an optimal policy π∗ as kt → ∞. For this to hold,
we must ensure limt→∞ kt > supX

1
π∗(X) , so the truncation threshold does not constrain the

optimal allocation in the limit and semiparametric efficiency can be achieved (see last line in
Theorem 3). This mirrors tradeoffs in efficient ATE estimation [13], where adaptive truncation
stabilizes estimation without distorting the estimator asymptotically. In practice, when the plug-
in policy π̃t is uniformly bounded away from 0 and 1, truncation becomes unnecessary: setting
kt = 1/minX{π̃t(X), 1− π̃t(X)} ensures πt = π̃t for all t.

6.2 Consistency Guarantees under Partial Nuisance Misspecification

As shown in Theorem 3, the convergence rate of AMRIV is primarily governed by the estimation
error of δ̂(X) and δ̂A(X). This reflects its multiply robust property: AMRIV remains consistent
even when other nuisance components are misspecified. This robustness goes beyond prior work on
IV methods in adaptive settings, where such guarantees were not established. The next two results
formalize AMRIV’s convergence rate and multiply robust consistency.
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Figure 2: Performance of different estimators across increasing sample size T . (a) Efficiency:
Normalized MSE versus an oracle benchmark. (b) Consistency: MSE ± standard error. (c) Coverage:
Empirical coverage of 95% confidence intervals.

Theorem 4 (Convergence Rate of the AMRIV Estimator). Suppose Assumptions 1 to 3 hold, and that
there exists a non-adaptive policy π(X) ∈ [ϵ, 1− ϵ] for some ϵ > 0 such that the adaptive policies πt
satisfy kt∥πt−π∥2 = op(1). Let η̃ = {µ̃Y (0, ·), µ̃A(0, ·), δ̃(·), δ̃A(·)} denote a possibly misspecified
limit of the nuisance functions, and suppose that kt∥f̂t−1 − f̃∥2 = op(1) for each f̃ ∈ η̃. Then the
AMRIV estimator satisfies∣∣τ̂AMRIV

T − τ
∣∣ = Op(T

−1/2) +Op

(
∥δ̂AT − δA∥2∥δ̂T − δ∥2

)
. (11)

Corollary 5 (Multiply Robust Consistency Guarantees). Under the conditions of Theorem 4, if either
δ̂t or δ̂At is L2-consistent, then the AMRIV estimator τ̂AMRIV

T is consistent for τ .

We provide a proof of Theorem 4 and Corollary 5 in Appendix E. An immediate consequence
of Theorem 4 is that if both δ̂(X) and δ̂A(X) converge at rate op(T−1/4), AMRIV achieves the
parametric Op(T

−1/2) rate. This is usually attainable under mild regularity conditions, even with
flexible nonparametric models. Furthermore, Corollary 5 shows that AMRIV inherits the multiply
robust property from its static counterpart [18, 44]. In the static setting, the MRIV converges if
either (i) µ̂Y (0, ·), µ̂A(0, ·), δ̂ are correctly specified, (ii) both π̂ and δ̂A are, or (iii) π̂ and δ̂ are.
However, in the adaptive setting, we can establish a stronger result: even if the outcome-related
nuisance functions µ̂Y

t (0, ·) and µ̂A
t (0, ·) are misspecified, AMRIV is still consistent as long as one

of δ̂At or δ̂t converges. This is due to the adaptive setting design where we control the instrument
assignment πt(Xt | Ht−1) which confers robustness to misspecification in µ̂Y

t (0, ·) and µ̂A
t (0, ·).

Thus, our adaptive generalization preserves the multiple robustness property, making it particularly
well-suited for practice where some nuisance components may be difficult to estimate reliably.

7 Experimental Results

We demonstrate the practical effectiveness of our approach in both synthetic and semi-synthetic
studies. In each setting, we compare our estimator (AMRIV) to its non-adaptive counterpart (AMRIV-
NA), which assigns the instrument uniformly at random; the plug-in direct method from Eq. (1) (DM)
and its non-adaptive version (DM-NA); the A2IPW estimator from [25]; and two oracle baselines:
a fully oracle-efficient estimator that uses the true nuisance functions (Oracle) and a non-adaptive
version (Oracle-NA). To assess robustness, we also evaluate misspecified variants of AMRIV and
DM—denoted AMRIV-MS and DM-MS—in which the δ(X) estimator is deliberately misspecified.

Across both experiments, we evaluate three desiderata: (i) efficiency, measured by normalized MSE
relative to the Oracle estimator; (ii) consistency, assessed via MSE decay with sample size T ; and (iii)
coverage, computed from empirical 95% confidence intervals. We implement all estimators using
Random Forests (RF, [8]) and update the nuisance estimates in mini-batches for efficiency. Further
implementation details, including model hyperparameters and ablations, are provided in Appendix F.
The replication code is available at https://github.com/CausalML/Adaptive-IV.

7.1 Simulation Studies with Synthetic Data

We construct a synthetic environment with one-sided noncompliance, where the treatment A is only
accessible to those who receive the instrument Z = 1. At each time t, we sample covariatesXt, assign
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the instrument Zt ∼ πt(Xt | Ht−1), and realize At = CtZt, where Ct is a latent compliance indica-
tor sampled from Bern(δA(Xt)). The outcome Yt depends on At, Xt, an unobserved confounder Ut,
and heteroskedastic noise. The full data-generating process is detailed in Appendix F.1.

We set T = 2000, T0 = 200, and run 1000 trajectories. All estimators are updated in batches of
size b = 200 and implemented using Random Forests (RFs) when applicable. For the adaptive
estimators, we use the truncated optimal policy in Eq. (7), with truncation schedule kt = 2/0.999t.
AMRIV uses RF classifiers for δA(X) (clipped at 0.01) and RF regressors for µY (z,X), while δ(X)
is computed via plug-in. A2IPW follows Kato et al. [25] with Neyman allocation and RF regressors.
To induce misspecification, we replace µ̂Y (1, X) with the constant Ê[µY (1, X)], flattening outcome
heterogeneity. Figure 2 summarizes the experimental results.

Adaptivity. As shown in panel (a), adaptive design consistently improves the efficiency of all
estimators. AMRIV approaches the oracle benchmark despite using estimated nuisances, while
AMRIV-NA exhibits a constant efficiency gap due to suboptimal allocation. This illustrated the
benefit of adaptivity in the one-sided noncompliance design, where asymmetries in outcome and
compliance variance make uniform allocation especially inefficient (Theorem 1). Panel (a) also
confirms that AMRIV and AMRIV-NA converge at the expected Op(T

−1/2) rate (Theorem 4),
whereas DM and DM-NA converge more slowly, as their normalized MSE increases with T .

Consistency. Panel (b) confirms that AMRIV, AMRIV-NA, and DM converge to the true τ , with
AMRIV variants achieving lower error due to variance-aware allocation. In contrast, A2IPW is biased
and fails to converge, as expected, since it does not correct for unobserved confounding in treatment
selection. We also note the effect of misspecification: DM-MS does not converge due to incorrect
estimation of δ(X), while AMRIV-MS remains consistent—highlighting the multiply-robust property
formalized in Theorem 4, which allows consistency even when some nuisances are misspecified.

Coverage. In panel (c), we evaluate the empirical coverage of 95% asymptotic confidence intervals.
Only AMRIV and AMRIV-NA attain nominal coverage, consistent with our theoretical results (Theo-
rem 3). Misspecified and plug-in methods under-cover, with DM and A2IPW performing particularly
poorly with increasing T due to finite-sample bias. AMRIV-MS provides partial correction but fails
to reach nominal levels, as required by consistency of δ(X).

7.2 Simulation Studies with Semi-Synthetic Data

We also evaluate AMRIV on a semi-synthetic dataset based on the TripAdvisor customer simulator
from Syrgkanis et al. [42], where we use customer features as covariates X , a simulated signup
prompt as the instrument Z, and subscription revenue as the outcome Y . The DGP and oracle
nuisances are described in Appendix F.2. Results are consistent with the synthetic setting: adaptive
instrument assignment improves efficiency, AMRIV achieves superior coverage and consistency, and
robustness holds under partial misspecification.

8 Conclusion

We develop AMRIV, an adaptive, multiply robust estimator for ATE estimation in experiments
where treatment can only be encouraged via a binary instrument. Our approach (i) derives the
semiparametric efficiency bound and optimal assignment policy, (ii) constructs a sequential estimator
that attains the bound under adaptive allocation, (iii) provides asymptotic normality, convergence rates,
and multiply robust consistency, and (iv) supports valid inference through time-uniform confidence
sequences. Empirical results on synthetic and semi-synthetic data confirm that adaptive instrument
assignment improves both efficiency and robustness over non-adaptive baselines. This work as a step
toward principled, data-efficient experimentation in real-world settings where compliance is optional
and uncertainty is unavoidable. We discuss limitations and broader impacts in Appendix G.
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A Extended Literature Review

We contextualize our work by surveying six strands of prior research. We group these into two
categories: (1) core threads that directly motivate and inform our methodology, and (2) auxiliary
threads that provide important theoretical and practical foundations but are not specific to our design.

A.1 Core Related Work

Identification and Estimation with Instrumental Variables. Instrumental variable (IV) methods
are widely used to estimate causal effects in the presence of endogenous treatment selection due to
unmeasured confounding. Under classical IV assumptions—exclusion, independence, and relevance—
these methods typically identify the local average treatment effect (LATE) [1, 2, 4, 10, 34], which
pertains to compliers: units whose treatment responds to the instrument. However, compliers represent
an unknown and potentially unrepresentative subpopulation, limiting the policy relevance of LATE.

To target the population average treatment effect (ATE), IV methods have traditionally relied on
linear structural equation models (SEMs), in which the ATE corresponds to a regression coefficient
under correct model specification [19]. Two-stage least squares (2SLS) is the canonical estimator in
this setting, but its consistency and interpretability depend on strong linearity assumptions [12, 47].
More recent SEM-based IV approaches focus on estimating conditional effects, including kernel IV
[40], DeepIV [23], and other moment-based estimators [6, 42].

We instead build on the framework of Wang and Tchetgen Tchetgen [44], who introduce an al-
ternative identification strategy based on an unconfounded compliance assumption. This allows
point identification of the ATE while separating identification assumptions from estimation model
assumptions. Their approach avoids reliance on parametric SEMs for ATE estimation and instead
yields an efficient semiparametric estimator with an efficient influence function (EIF) that confers the
estimator a multiple-robust property, i.e. the estimator remains consistent if one or several nuisance
components are misspecified. This structure makes their estimators well-suited to nonparametric
plug-in estimation using modern machine learning tools. Recent work extends this framework to
nonparametric identification of ATEs under related assumptions [29].

We adopt the framework of Wang and Tchetgen Tchetgen [44] as the foundation for our estimator,
with the goal of efficiently and robustly estimating the ATE under adaptive, sequential data collection.
Specifically, we derive the semiparametric efficiency bound for ATE estimation under arbitrary,
covariate-dependent instrument-assignment policies and identify the optimal adaptive policy that
minimizes this bound. We then introduce AMRIV, an adaptive, multiply robust estimator that attains
the bound and enables valid inference in sequential experiments.

Adaptive Experimental Design for Treatment Effect Estimation. A growing body of work inves-
tigates adaptive algorithms for estimating the average treatment effect (ATE) efficiently and with
minimal variance. This line of research was initiated by Hahn et al. [22], who proposed a two-stage de-
sign that asymptotically achieves the semiparametric efficiency bound, echoing explore-then-commit
strategies in bandit settings. Building on this, Kato et al. [25] introduced the Adaptive Augmented In-
verse Propensity Weighting (A2IPW) estimator, which enables fully sequential, covariate-dependent
treatment assignment. They showed that this procedure achieves asymptotic optimality and outper-
forms earlier two-stage designs in finite-sample experiments.

Subsequent work has strengthened the theoretical and practical foundations of adaptive ATE estima-
tion. Kato et al. [26] extended A2IPW to the setting where the assignment policy itself is estimated
and demonstrated multiply robust consistency under partial nuisance misspecification. Cook et al.
[13] further advanced this line by introducing principled policy truncation to control variance and
ensure stable finite-sample behavior. They also established asymptotic normality and developed the
first time-uniform confidence sequences for adaptive ATE estimation. Together, these contributions
form the basis of a modern toolkit for adaptive experimentation that supports robust estimation,
sequential inference, and strong theoretical guarantees.

Our work builds directly on this literature. We borrow and integrate many of its key components—
influence-function–based estimation, cross-fitting, and policy truncation—to construct a complete,
theoretically grounded estimator for experiments with noncompliance. Unlike existing work, however,
we consider settings with endogenous treatment selection and unobserved confounding, where the
experimenter can only assign a binary instrument rather than the treatment itself. To our knowledge,
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we provide the first adaptive estimator in this setting that achieves the semiparametric efficiency
bound and supports valid sequential inference.

Adaptive Experimentation with Instrumental Variables. Recent work has begun to explore
adaptive experimentation in settings where treatments cannot be directly assigned, requiring the use
of instrumental variables (IVs) to estimate causal effects under unobserved confounding. Broadly,
these efforts fall into two categories: methods aimed at improving predictive accuracy in the presence
of confounding, and approaches focused on adaptive design and data collection or regret minimization
using bandit-style feedback.

The first group focuses on improving estimation efficiency in indicrect experiments. Gupta et al.
[21] propose an adaptive framework for selecting among multiple data sources to efficiently estimate
causal functionals such as the ATE. Their method, Online Moment Selection (OMS), chooses which
source to query at each step based on moment conditions implied by a causal graph. While they
address efficient data acquisition under structural constraints, their setting assumes passive data
collection and differs from our focus on adaptive experimental design with noncompliance and
endogenous treatment. Ailer et al. [3] study sequential indirect experiment design in instrumental
variable settings, focusing on partial identification of nonlinear treatment effect queries. Rather than
aiming for point estimation, their method adaptively tightens upper and lower bounds on a functional
Q[f ] of the treatment effect by selecting experiments that reduce the gap between these bounds. In
contrast, our work targets point identification and estimation of the ATE, and provides semiparametric
efficiency and robustness guarantees under adaptive instrument assignment. Most closely related to
our setting, Chandak et al. [9] study adaptive instrument selection to improve sample efficiency in
indirect experiments. They propose a general influence-function–based optimization procedure for
selecting instruments that minimize the mean squared error of nonparametric IV estimators, such as
DeepIV [23]. However, their objective is variance reduction for prediction, not inference for causal
estimands like the ATE. Their analysis is estimator-specific and does not characterize semiparametric
efficiency bounds or multiply robust inference, which are central to our approach.

The second line of work focuses on regret minimization in settings with instrumental feedback.
Zhao et al. [50] use randomized instruments within a linear structural equation model to enable pure
exploration for policy learning under unobserved confounding. Their focus is on identifying the best
treatment arm using bandit-style algorithms with finite-sample confidence intervals and near-optimal
sample complexity guarantees. Unlike our work, which targets semiparametric inference for the ATE,
their goal is policy optimization rather than estimation. Della Vecchia and Basu [16] study online
instrumental variable regression with bandit feedback and propose regret bounds under endogeneity.
Their focus is on prediction in stochastic settings with instrumental bandit structure, rather than causal
effect estimation or statistical inference.

Our Contribution. To our knowledge, we present the first estimator that is both semiparametrically
efficient and multiply robust for ATE estimation under a binary instrument with adaptive assignment.
We characterize the efficiency bound, derive the optimal allocation policy that balances outcome and
compliance variance, and develop the AMRIV estimator that asymptotically attains this bound. Our
results generalize prior work on ATE estimation to settings with endogenous treatments, establish
asymptotic normality, and construct time-uniform asymptotic confidence sequences. Empirical
studies confirm our method’s efficiency, robustness, and practical viability.

A.2 Auxiliary Context

Semiparametric Efficiency and Influence-Function–Based Methods.

Our estimator builds on a long line of semiparametric inference techniques, particularly those using
influence functions to achieve efficiency and robustness in the presence of nuisance components
[7, 38]. Recent work has adapted these methods to flexible machine learning settings by incorporating
sample-splitting and cross-fitting [11, 18, 27]. In adaptive experiments, such techniques have been
shown to yield efficient estimators without requiring Donsker conditions [13, 25, 26]. We extend
these tools to a setting with endogenous treatment and adaptive assignment via a binary instrument.

Multiply Robust Estimation.

Multiply robust estimators remain consistent if any one of multiple nuisance components is correctly
specified. In the IV context, this structure has been exploited to enhance robustness of ATE and
CATE estimators [18, 44]. We extend these ideas to adaptive settings, showing that AMRIV retains
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consistency even when some nuisance functions are misspecified, as long as at least one of δ(X) or
δA(X) is consistently estimated.

Confidence Sequences and Anytime-Valid Inference.

Confidence sequences (CSs) provide coverage guarantees that hold uniformly over time, making
them well-suited to adaptive experiments with interim monitoring or early stopping. Recent work has
developed CSs for influence-function–based estimators using martingale techniques and empirical
Bernstein bounds [13, 24, 46]. We build on this to construct asymptotically valid confidence sequences
for our adaptive IV estimator, accounting for sequential dependence and cross-fitted nuisances.

B Asymptotic Confidence Sequences

The fixed–time intervals in Section 6 guarantee (1 − α) coverage solely at a pre-specified sample
size T . In practice, however, analysts often peek at interim results and may stop the study early once
a decision rule is met [37], behavior that invalidates fixed-time intervals. To remain valid under such
data-dependent stopping one needs a confidence sequence (CS)—a collection of intervals

[Lt, Ut]t≥1

satisfying the time-uniform guarantee
P
(
∀t ∈ N+ : τ ∈ [Lt, Ut]

)
≥ 1− α.

Constructing non-asymptotic, anytime-valid CSs can be difficult in when the target estimand contains
estimated nuisance functions. Fortunately, for AMRIV the nuisance-induced remainder is op(t−1/2)
under Theorem 3 assumptions, so an asymptotic CS—valid after a finite, burn-in phase—in remains
both tractable and practically useful.
Definition 1 (Asymptotic time-uniform coverage [15, Def. 2.1 & 2.3]). A sequence of random
intervals C̃t = [L̃t, Ũt]t≥1 is an asymptotic time uniform (1− α) confidence sequence (AsympCS)
for a parameter τ if the following two conditions hold.

(i) Asymptotic confidence sequence: there exists an exact (potentially unknown) (1−α) confidence
sequence C⋆

t = [L⋆
t , U

⋆
t ]t≥1 such that L̃t/L

⋆
t → 1 and Ũt/U

⋆
t → 1 almost surely.

(ii) Asymptotic time-uniform coverage:

lim
T0→∞

P
(
∀t ≥ T0 : τ ∈ C̃t

)
≥ 1− α.

Definition 1 can be read as follows: if one waits to “peek” until the sample size is sufficiently large
(T ≥ T0 for some burn-in T0), the band then covers the true parameter at every later time with
probability approaching 1− α. In practice, the rare coverage failures occur almost exclusively during
this short initial window; once past it, the intervals tighten rapidly and deliver appreciable power
gains over fully non-asymptotic sequences [13, 45].

Building on the methodologies of Waudby-Smith et al. [46] and Cook et al. [13], we now present the
corresponding asymptotic confidence-sequence (AsympCS) results for our estimator:
Theorem 6 (AsympCS for AMRIV). Suppose Assumptions 1 to 3 hold and there exists a non-
adaptive policy π(X) ∈ [ϵ, 1 − ϵ] for some ϵ > 0 such that the nuisances estimates η̂t and the
adaptive assignment policy πt(X | Ht−1) are L2-consistent relative to the truncation schedule,
i.e. kt∥f̂t−1 − f∥2 = op(1) and kt∥πt − π∥2 = op(1) for f ∈ {µY (0, ·), µA(0, ·), δ(·), δA(·)}.

Furthermore, assume ∥δ̂t−1 − δ∥2 = oa.s.(1) and ∥δ̂t−1 − δ∥2∥δ̂At−1 − δA∥2 = oa.s.

(√
log t
t

)
. Let

V̂T :=
1

T

T∑
t=1

(
ϕ(Xt, Zt, At, Yt; πt, η̂t)− τ̂AMRIV

T

)2
,

be the estimated variance of {ϕ(Xt, Zt, At, Yt; πt, η̂t)}, and fix a user-specified ρ > 0. Then, for all
T > 0, the interval

C̃AsympCS
T :=

τ̂AMRIV
T ±

√√√√√2(T V̂T ρ2 + 1)

T 2ρ2
log


√
T V̂T ρ2 + 1

α



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forms an asymptotic (1− α) confidence sequence (as in Definition 1) for τ . Furthermore, width of
C̃AsympCS

T is (approximately) minimized at

ρ⋆ =

√
−2 logα + log

(
−2 logα+ 1

)
T

.

Remark 1 (Difference in convergence rates for fixed-time and anytime-valid inference.). The
conditions under which the AsympCS in Theorem 6 is valid are largely the same as those imposed
for fixed time inference in Theorem 3. The main difference lies in the convergence conditions for the
nuisance functions. While ∥δ̂t−1 − δ∥2 and ∥δ̂t−1 − δ∥2∥δ̂At−1 − δA∥2 are assumed to converge in
probability for fixed time inference, confidence sequences require convergence almost surely, as noted
by Waudby-Smith et al. [45]. However, the conditions for valid inference are not necessarily stricter
than fixed-time inference, as the product error term is allowed to converge a slower

√
log t/t rate as

opposed to t−1/2.

Proof of Theorem 6. For the proof of Theorem 6, we rely on an existing result for asymptotic
confidence sequences [45]. For completeness, we provide this result in Lemma 7 below.

Lemma 7 (Corollary 3.4 of Waudby-Smith et al. [45] ). Suppose θ̂t is an asymptotically linear
estimator of θ with influence function ϕ that satisfies

θ̂t − θ =
1

t

t∑
i=1

ϕ(Xi, Zi, Ai, Yi;πt, ηt) + oa.s.

(√
log t/t

)
. (12)

Furthermore, suppose that Var(ϕ) < ∞. Then,

(
θ̂t ±

√
2(tρ2+1)

t2ρ2 log

(√
tρ2+1

α

))
forms a valid

(1− α)-AsympCS (as in Definition 1) for θ.

Using Lemma 7, we only need to show that (i) the residual error of our estimator is of a smaller order
than

√
log t/t almost surely and (ii) the variance of the limiting influence function ϕ is bounded.

Verifying Residual Error. Our proof of the residual error bound follows similar steps to the proof
of Theorem 3. We first rewrite the difference between our estimate τ̂AMRIV

t and τ as

τ̂AMRIV
t − τ =

1

t

t∑
i=1

ϕ(Xi, Ai, Zi, Yi;πt, ηt)−
1

t

t∑
i=1

mt, (13)

where mt = ϕ(Xi, Ai, Zi, Yi;πt, η̂t)− ϕ(Xi, Ai, Zi, Yi;πt, ηt). We repeat the same arguments as
the proof of Theorem 3, which shows that the cumulative residual error (i.e. the sum of mt) vanish
at op(1/

√
t) rates. Replacing assumptions ∥δ̂t−1 − δ∥2 = op(1) with ∥δ̂t−1 − δ∥2 = oa.s.(1) and

∥δ̂t−1−δ∥2∥δ̂At−1−δA∥2 = op(t
−1/2) with ∥δ̂t−1−δ∥2∥δ̂At−1−δA∥2 = oa.s.

(√
log t
t

)
, we obtain∑t

i=1mt = oa.s.(
√
t log t). Normalizing by t, we obtain the desired result.

Finite Variance of ϕ. The finite variance of limiting influence function ϕ is immediate from
Assumption 3 and the condition that π(X) ∈ [ϵ, 1− ϵ] for some ϵ > 0. Under these assumptions, for
any tuple (X,Z,A, Y ), ϕ is bounded almost surely as a function of some constant C,

|ϕ(X,Z,A, Y )| = 2

ϵ

(
3C2 + C3

)
+ C.

Using this bound, we now upper bound the variance as follows:

Var (ϕ) = E[ϕ2]− E[ϕ]2 ≤ E[ϕ2] ≤
(
2

ϵ

(
3C2 + C3

)
+ C

)2

.

Because the constant C is finite, the variance must also be finite, which completes our proof.

By Lemma 7, the confidence sequence in Theorem 6 is a valid (1− α)-AsympCS for τ . The proof
for the approximate choice of ρ∗ that minimizes the relative width of the confidence sequence at time
T is provided in Waudby-Smith et al. [45, Appendix B.2].
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C Proof of Theorem 1 and Corollary 2

In semiparametric theory, the efficiency bound is determined by the variance of the EIF characterized
in Eq. (2):

Veff(π) = E[(ϕ(X,Z,A, Y ; η)− τ)2]

= E
[
E[(ϕ(X,Z,A, Y ; η)− τ)2 | X]

]
(Law of iteratred expectations)

where

ϕ(X,Z,A, Y ; η)− τ

=
2Z − 1

Zπ(X) + (1− Z)(1− π(X))

1

δA(X)

[
Y −Aδ(X)− µY (0, X) + µA(0, X)δ(X)

]
︸ ︷︷ ︸

Λ1

+δ(X)− τ

First, we show that E[Λ1 | X] = 0:

E[Λ1 | X] = π(X)E[Λ1 | Z = 1, X] + (1− π(X))E[Λ1 | Z = 0, X]

=
π(X)

π(X)

1

δA(X)

(
µY (1, X)− µA(1, X)δ(X)− µY (0, X) + µA(0, X)δ(X)

)
+

1− π(X)

1− π(X)

1

δA(X)

(
µY (0, X)− µA(0, X)δ(X)− µY (0, X) + µA(0, X)δ(X)

)︸ ︷︷ ︸
=0

(Using the µA, µY definitions)

=
1

δA(X)
(µY (1, X)− µA(1, X)δ(X)− µY (0, X) + µA(0, X)δ(X))

= 0

where in the last line we used the fact that δ(X) = µY (1,X)−µY (0,X)
µA(1,X)−µA(0,X)

which implies the identity
µY (1, X)− µA(1, X)δ(X) = µY (0, X)− µA(0, X)δ(X).

Thus, we can expand Veff(π) as:

Veff(π) = E
[
E[(Λ1 + δ(X)− τ)2 | X]

]
= E

[
E[Λ2

1 | X] + (δ(X)− τ)2
]
− 2E [(δ(X)− τ)E[Λ1 | X]]

= E
[
E[Λ2

1 | X] + (δ(X)− τ)2
]

(Using E[Λ1 | X]=0)

In now remains to expand E[Λ2
1 | X]:

E[Λ2
1 | X] = π(X)E[Λ2

1 | Z = 1, X] + (1− π(X))E[Λ2
1 | Z = 0, X]

=
π(X)

π(X)2
1

δA(X)2
E
[
(Y −Aδ(X)− µY (0, X) + µA(0, X)δ(X))2 | Z = 1, X

]
+

1− π(X)

(1− π(X))2
1

δA(X)2
E
[
(Y −Aδ(X)− µY (0, X) + µA(0, X)δ(X))2 | Z = 0, X

]
=

1

δA(X)2

(
1

π(X)
Var(Y −Aδ(X) | Z = 1, X)

+
1

1− π(X)
Var(Y −Aδ(X) | Z = 0, X)

)
=

1

δA(X)2

(
σ2(1, X)

π(X)

σ2(0, X)

1− π(X)

)
where we used the fact that E[Y − Aδ(X) | Z = 0, X] = µY (0, X) − µA(0, X)δ(X) and
E[Y − Aδ(X) | Z = 1, X] = µY (1, X)− µA(1, X)δ(X) = µY (0, X)− µA(0, X)δ(X). Putting
everything together, we obtain the result of Theorem 1:

Veff(π) := E
[

1

δA(X)2

(
σ2(1, X)

π(X)
+
σ2(0, X)

1− π(X)

)
+ (δ(X)− τ)

2

]
.
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Then, the optimal policy π∗(X) is given by:
π∗ = argmin

π
Veff(π)

= argmin
π

E
[

1

δA(X)2

(
σ2(1, X)

π(X)
+
σ2(0, X)

1− π(X)

)]
= argmin

π
E
[

1

δA(X)2
E
[(

σ2(1, X)

π(X)
+
σ2(0, X)

1− π(X)

) ∣∣∣∣X]]
⇒ π∗(X) = argmin

p

(
σ2(1, X)

p
+
σ2(0, X)

1− p

)
The minimum is obtained when the derivative of the argument w.r.t. p is 0, i.e. σ2(0,X)

(1−p)2 − σ2(1,X)
p2 = 0.

By solving for p, we obtain p =
√

σ2(1,X)√
σ2(1,X)+

√
σ2(0,X)

. Thus, we obtain the result of Corollary 2:

π∗(X) =

√
σ2(1, X)√

σ2(1, X) +
√
σ2(0, X)

.

D Proof of Theorem 3

D.1 Preliminaries

Our asymptotic argument relies on a martingale central limit theorem under a Lindeberg-type
condition. We use a streamlined version of the MDS central limit theorem originally due to Dvoretzky
[17], as presented in Zhang et al. [49, Theorem 2].
Theorem 8 (Martingale CLT, adapted from [49, Thm. 2]). Let {(zt,Ht)}Tt=1 be a real-valued
sequence where zT = 1

T

∑T
t=1 zt such that:

1. (Martingale difference sequence) {zt}Tt=1 is a martingale difference sequence; that is,
E[zt | Ht−1] = 0 for every t ∈ [1, T ].

2. (Conditional variance convergence) There exists a constant σ2 > 0 such that

1

T

T∑
t=1

E[z2t | Ht−1]
p−→ σ2,

3. (Lindeberg condition) For every ϵ > 0,

1

T

T∑
t=1

E
[
z2t I{|zt| > ϵ

√
T} | Ht−1

]
p−→ 0.

Then,
√
T zT

d−→ N (0, σ2).

To begin our proof, we define ψt := ϕ(Xt, At, Zt, Yt;πt, η̂t)−τ , where ϕ is given in Eq. (9). Letting
η = {µY

t−1(0, X), µA
t−1(0, X), δAt−1(X), δt−1(X)} denote the true nuisance values, we decompose

ψt as
ψt = ϕ(Xt, At, Zt, Yt;πt, η)− τ︸ ︷︷ ︸

zt

+ϕ(Xt, At, Zt, Yt;πt, η̂t)− ϕ(Xt, At, Zt, Yt;πt, η)︸ ︷︷ ︸
mt

,

such that
√
T (τ̂AMRIV

T − τ) =
√
T

(
1

T

T∑
t=1

zt − τ

)
+

√
T

(
1

T

T∑
t=1

mt

)
.

Then, the proof of Theorem 3 proceeds in three steps. We first verify that {zt}Tt=1 forms a martingale
difference sequence. Then, we show that {zt}Tt=1 satisfies conditions (2)-(3) of Theorem 8 with
σ2 = Veff(π). Finally, we will show that

√
T ( 1

T

∑T
t=1mt) = op(1), thus concluding that

√
T (τ̂AMRIV

T − τ)
d−→ N (0, Veff(π)).
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D.2 MDS structure of zt

We now show that {zt} = {ϕt(Xt, At, Zt, Yt;πt, η)− τ} forms an MDS, i.e. E[zt | Ht−1] = 0:

E[zt − τ | Ht−1]

= E
[ 2Zt − 1

Ztπt(Xt | Ht−1) + (1− Zt)(1− πt(Xt | Ht−1))

1

δA(Xt)

·
[
Yt −Atδ(Xt)− µY (0, Xt) + µA(0, Xt)δ(Xt)

]
+ δ(Xt)

∣∣∣Ht−1

]
− τ

= E
[
E
[ 2Zt − 1

Ztπt(Xt | Ht−1) + (1− Zt)(1− πt(Xt | Ht−1))

1

δA(Xt)

·
[
Yt −Atδ(Xt)− µY (0, Xt) + µA(0, Xt)δ(Xt)

] ∣∣∣Xt,Ht−1

]∣∣∣Ht−1

]
+ τ − τ

From Eq. (1)

= E
[ 1

δA(Xt)

[
µY (1, Xt)− µA(1, Xt)δ(Xt)− µY (0, Xt) + µA(0, Xt)δ(Xt)

]
− 1

δA(Xt)

[
µY (0, Xt)− µA(0, Xt)δ(Xt)− µY (0, Xt) + µA(0, Xt)δ(Xt)

] ∣∣∣Ht−1

]
= 0

where we used the identity µY (1, Xt) − µA(1, Xt)δ(Xt) = µY (0, Xt) − µA(0, Xt)δ(Xt) which
follows from the definition of δ(Xt). Thus, {zt} is an MDS, owing to the fact that πt is constructed
from historical data only.

D.3 zt satisfies conditions (2)–(3) of Theorem 8

For condition (2), we first show that E[z2t | Ht−1]− Veff(π)
p−→ 0:

E[z2t | Ht−1]− Veff(π)

= Var(zt | Ht−1)− E
[

1

δA(Xt)2

(
σ2(1, Xt)

π(Xt)
+
σ2(0, Xt)

1− π(Xt)

)
+ (δ(Xt)− τ)

2

]
(E[zt | Ht−1] = 0)

= Var(ϕ(Xt, At, Zt, Yt;πt, η) | Ht−1)

− E
[

1

δA(Xt)2

(
σ2(1, Xt)

π(Xt)
+
σ2(0, Xt)

1− π(Xt)

)
+ (δ(Xt)− τ)

2

]
= E

[
1

δA(Xt)2

(
σ2(1, Xt)

πt(Xt | Ht−1)
+

σ2(0, Xt)

1− πt(Xt | Ht−1)

)
+ (δ(Xt)− τ)

2

∣∣∣∣Ht−1

]
(η is the oracle nuisance set)

− E
[

1

δA(Xt)2

(
σ2(1, Xt)

π(Xt)
+
σ2(0, Xt)

1− π(Xt)

)
+ (δ(Xt)− τ)

2

]
= E

[
σ2(1, Xt)

δA(Xt)2

(
π(Xt)− πt(Xt | Ht−1)

πt(Xt | Ht−1)π(Xt)

)∣∣∣∣Ht−1

]
+ E

[
σ2(0, Xt)

δA(Xt)2

(
πt(Xt | Ht−1)− π(Xt)

(1− πt(Xt | Ht−1))(1− π(Xt))

)∣∣∣∣Ht−1

]
≤

36C2ϵ2δAkt

ϵ
|E[π(Xt)− πt(Xt | Ht−1)]| ≲ kt∥πt − π∥2 = op(1)

where in the last line we use the following boundedness conditions: (i) |Y | ≤ C from Assumption 3
and thus |δ(X)| ≤ 2C and σ2(z,Xt) = E[(Y − Aδ(Xt))

2 | Z = z,Xt] − E[Y − Aδ(Xt) | Z =
z,Xt]

2 ≤ 18C2, (ii) |δA(X)|−1 ≤ ϵδA for some ϵδA > 0 implicit in the (conditional) relevance in
Assumption 1, (iii) π(Xt), 1− π(Xt) > ϵ from Theorem 3 statement, (iv) π(Xt), 1− π(Xt) ≥ 1/kt
by construction, and (v) the L1 norm is bounded by the L2 norm. Thus, setting σ2 := Veff , we
have that each term converges in probability to σ2, i.e. E[z2t | Ht−1]

p−→ σ2, where σ2 is finite by
Assumption 1 and Assumption 3.
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To complete condition (2), we now show that∣∣∣∣∣ 1T
T∑

t=1

E[z2t | Ht−1]− σ2

∣∣∣∣∣ p−→ 0.

Let at := E[z2t | Ht−1] and a := σ2. We have just established that at
p→ a, and under our bounded-

ness assumptions, supt E[at] <∞, so the sequence {at} is uniformly integrable. By the L1 conver-
gence theorem (e.g., Loève [30]), this implies that at → a in L1, i.e., E

[∣∣E[z2t | Ht−1]− σ2
∣∣]→ 0.

Therefore, by Cesàro averaging and Markov’s inequality, we obtain 1
T

∑T
t=1 E[z2t | Ht−1]

p−→ σ2,
completing the verification of condition (2) in Theorem 8.

Now we verify that zt satisfies condition (3), the Lindenberg condition. We follow the same steps as
in Cook et al. [13]. Let bt := z2t · I{|zt| > δ

√
T}. Then bt = z2t with probability Pr(|zt| > δ

√
T ),

and bt = 0 otherwise. By Chebyshev’s inequality,

Pr(|zt| > δ
√
T ) ≤ Var(zt)

δ2T
.

Since Var(zt) = E[z2t ] <∞, it follows that limT→∞
Var(zt)
δ2T = 0, which implies bt

p→ 0 and hence

bt
d→ 0. Moreover, note that |bt| ≤ z2t and E[z2t ] <∞. By the dominated convergence theorem,

lim
T→∞

E[bt] = E
[
lim

T→∞
bt

]
= 0.

Therefore,

1

T

T∑
t=1

E
[
z2t · I

{
|zt| > δ

√
T
}
| Ht−1

]
p−→ 0,

verifying the Lindeberg-type condition required for the martingale CLT.

D.4
√
T
(

1
T

∑T
t=1mt

)
is op(1)

We first decompose
√
T
(

1
T

∑T
t=1mt

)
as:

√
T

(
1

T

T∑
t=1

mt

)

=
√
T

(
1

T

T∑
t=1

(ϕ(Xt, At, Zt, Yt;πt, η̂t)− ϕ(Xt, At, Zt, Yt;πt, η))

)

=
√
T

(
1

T

T∑
t=1

(E[ϕ(Xt, At, Zt, Yt;πt, η̂t) | Ht−1]− E[ϕ(Xt, At, Zt, Yt;πt, η) | Ht−1])

)
(∆A)

+
√
T
( 1

T

T∑
t=1

{
(ϕ(Xt, At, Zt, Yt;πt, η̂t)− ϕ(Xt, At, Zt, Yt;πt, η))

− E[ϕ(Xt, At, Zt, Yt;πt, η̂t)− ϕ(Xt, At, Zt, Yt;πt, η) | Ht−1]
})

(∆B)

where ∆A is an asymptotic bias term due to nuisance estimation and ∆B is the empirical pro-
cess term. We bound these independently. Let ∆A

t = E[ϕ(Xt, At, Zt, Yt;πt, η̂t) | Ht−1] −
E[ϕ(Xt, At, Zt, Yt;πt, η) | Ht−1]. Then:

∆A
t

= E[ϕ(Xt, At, Zt, Yt;πt, η̂t) | Ht−1]− E[ϕ(Xt, At, Zt, Yt;πt, η) | Ht−1]

= E[E[ϕ(Xt, At, Zt, Yt;πt, η̂t) | Xt,Ht−1] | Ht−1]− E[δ(Xt) | Ht−1]

= E
[
E[ϕ(Xt, At, Zt, Yt;πt, η̂t) | Zt = 1, Xt,Ht−1]πt(Xt | Ht−1) | Ht−1]
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+ E
[
E[ϕ(Xt, At, Zt, Yt;πt, η̂t) | Zt = 0, Xt,Ht−1](1− πt(Xt | Ht−1)) | Ht−1

]
− E[δ(Xt) | Ht−1]

= E

[
1

δ̂At−1(Xt)
(µY (1, Xt)− µA(1, Xt)δ̂t−1(Xt) + µ̂Y

t−1(0, Xt)− µ̂A
t−1(0, Xt)δ̂t−1(Xt))

− 1

δ̂At−1(Xt)
(µY (0, Xt)− µA(0, Xt)δ̂t−1(Xt) + µ̂Y

t−1(0, Xt)− µ̂A
t−1(0, Xt)δ̂t−1(Xt))

+ δ̂t−1(Xt)− δt−1(Xt)

∣∣∣∣Ht−1

]

= E

[
1

δ̂At−1(Xt)
(δY (Xt)− δA(Xt)δ̂t−1(Xt)) + δ̂t−1(Xt)− δt−1(Xt)

∣∣∣∣Ht−1

]

= E

[
δA(Xt)

δ̂At−1(Xt)
(δ(Xt)− δ̂t−1(Xt)) + δ̂t−1(Xt)− δt−1(Xt)

∣∣∣∣Ht−1

]

= E

[
1

δ̂At−1(Xt)
(δA(Xt)− δ̂At−1(Xt))(δ(Xt)− δ̂t−1(Xt))

∣∣∣∣Ht−1

]
≤ C∥δ̂t−1 − δ∥2∥δ̂At−1 − δA∥2 (Assumption 3 and Cauchy-Schwarz)

= op(t
−1/2)

Using a similar argument as in the previous section, we have that
√
T
(

1
T

∑T
t=1 ∆

A
t

)
= op(1).

We now focus on the empirical process term ∆B . We will show that E[∆B ] = 0 and Var(∆B) =
op(1) and then apply Chebyshev’s inequality to reach the desired conclusion. We now turn to the
empirical process term ∆B . Our goal is to show that E[∆B ] = 0 and Var(∆B) = op(1), which
together imply that ∆B is op(1) by Chebyshev’s inequality.

Let ϕt(η̂t) := ϕ(Xt, At, Zt, Yt;πt, η̂t) and ϕt(η) := ϕ(Xt, At, Zt, Yt;πt, η). We tackle the mean:

E[∆B ] = E

[
1√
T

T∑
t=1

(ϕt(η̂t)− ϕt(η)− E[ϕt(η̂t)− ϕt(η) | Ht−1])

]

=

√
T

T

T∑
t=1

(E[ϕt(η̂t)− ϕt(η)]− E[ϕt(η̂t)− ϕt(η)]) = 0. (Iterated expectations)

Let us now bound Var(∆B). Since the summands in ∆B are conditionally mean-zero and adapted to
the filtration Ht−1, the cross-terms vanish by martingale difference independence. Thus:

Var(∆B) = Var

(
1√
T

T∑
t=1

(ϕt(η̂t)− ϕt(η)− E[ϕt(η̂t)− ϕt(η) | Ht−1])

)

=
1

T

T∑
t=1

Var (ϕt(η̂t)− ϕt(η)− E[ϕt(η̂t)− ϕt(η) | Ht−1])

=
1

T

T∑
t=1

E [Var (ϕt(η̂t)− ϕt(η) | Ht−1)]

≤ 1

T

T∑
t=1

E
[
E[(ϕt(η̂t)− ϕt(η))

2 | Ht−1]
]

where we used the inequality Var(X − E[X | F ]) ≤ E[X2] for any square-integrable X . We now
stochastically bound E[(ϕt(η̂t)− ϕt(η))

2 | Ht−1]. First, we note:

ϕt(η̂t)− ϕt(η)
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=
2Z − 1

Zπt(Xt) + (1− Z)(1− πt(Xt))
·{

Yt
δA(Xt)− δ̂At−1(Xt)

δA(Xt)δ̂At−1(Xt)
−At

(
δ̂t−1(Xt)

δ̂A(Xt)
− δ(Xt)

δA(Xt)

)
+

(
µ̂Y
t−1(0, Xt)

δ̂A(Xt)
− µY (0, Xt)

δA(Xt)

)

+

(
µ̂A
t−1(0, Xt)δ̂t−1(0, Xt)

δ̂A(Xt)
−
µA
t−1(0, Xt)δt−1(0, Xt)

δA(Xt)

)
+ (δ̂(Xt)− δ(Xt))

}
.

Then:

E[(ϕt(η̂t)− ϕt(η))
2 | Ht−1] = E

[
E
[
(ϕt(η̂t)− ϕt(η))

2 | Xt,Ht−1

]]
≤ 2E

[
1

πt(Xt)
E[Y 2

t | Zt = 1, Xt]
(δA(Xt)− δ̂At−1(Xt))

2

(δA(Xt)δ̂At−1(Xt))2

∣∣∣∣∣Ht−1

]
(a)

+ 2E

 1

πt(Xt)
E[A2

t | Zt = 1, Xt]

(
δ̂t−1(Xt)

δ̂A(Xt)
− δ(Xt)

δA(Xt)

)2∣∣∣∣∣Ht−1

 (b)

+ 2E

 1

πt(Xt)

(
µ̂Y
t−1(0, Xt)

δ̂A(Xt)
− µY (0, Xt)

δA(Xt)

)2∣∣∣∣∣Ht−1

 (c)

+ 2E

 1

πt(Xt)

(
µ̂A
t−1(0, Xt)δ̂t−1(0, Xt)

δ̂A(Xt)
−
µA
t−1(0, Xt)δt−1(0, Xt)

δA(Xt)

)2∣∣∣∣∣Ht−1

 (d)

+ 2E
[
(δ̂(Xt)− δ(Xt))

2
∣∣Ht−1

]
(e)

− 2E

[
1

1− πt(Xt)
E[Y 2

t | Zt = 0, Xt]
(δA(Xt)− δ̂At−1(Xt))

2

(δA(Xt)δ̂At−1(Xt))2

∣∣∣∣∣Ht−1

]
(a)

− 2E

 1

1− πt(Xt)
E[A2

t | Zt = 1, Xt]

(
δ̂t−1(Xt)

δ̂A(Xt)
− δ(Xt)

δA(Xt)

)2∣∣∣∣∣Ht−1

 (b)

− 2E

 1

1− πt(Xt)

(
µ̂Y
t−1(0, Xt)

δ̂A(Xt)
− µY (0, Xt)

δA(Xt)

)2∣∣∣∣∣Ht−1

 (c)

− 2E

 1

1− πt(Xt)

(
µ̂A
t−1(0, Xt)δ̂t−1(0, Xt)

δ̂A(Xt)
−
µA
t−1(0, Xt)δt−1(0, Xt)

δA(Xt)

)2∣∣∣∣∣Ht−1

 (d)

− 2E
[
(δ̂(Xt)− δ(Xt))

2
∣∣Ht−1

]
(e)

Bounding all terms using Assumption 1 and Assumption 3, we have:

E[(ϕt(η̂t)− ϕt(η))
2 | Ht−1]

≤ 4ktC
4ϵ2δA∥δ̂

A − δA∥22 (a)

+ 8ktC
2ϵ2δA(∥δ̂t−1 − δ∥22 + 4C2∥δ̂At−1 − δA∥22) (b)

+ 8ktC
2ϵ2δA(∥µ̂

Y
t−1(0, ·)− µY (0, ·)∥22 + C2∥δ̂At−1 − δA∥22) (c)

+ 8ktC
2ϵ2δA(4C

4∥µ̂A
t−1(0, ·)− µA(0, ·)∥22 + 4C4∥δ̂At−1 − δA∥22 + C2∥δ̂t−1 − δ∥22) (d)

+ ∥δ̂(Xt)− δ(Xt)∥22 (e)
= op(1)

where the last line follows from the fact that (a-e) are op(1) from the premise of Theorem 3. Since each

term E
[
(ϕt(η̂t)− ϕt(η))

2 | Ht−1

]
is nonnegative, uniformly bounded, and satisfies op(1), it follows
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by Cesàro averaging that 1
T

∑T
t=1 E

[
(ϕt(η̂t)− ϕt(η))

2 | Ht−1

]
= op(1). Thus, Var(∆B) = op(1)

and we can apply Chebyshev’s inequality to obtain P (|∆B | ≥ ε) ≤ Var(∆B)/ε2,∀ε > 0. Therefore,
∆B is op(1), as desired. Putting everything together, we conclude that

√
T
(

1
T

∑T
t=1mt

)
= op(1)

and the conclusion of Theorem 3 holds.

E Proof of Theorem 4 and Corollary 5

Letting ϕt(π, η) := ϕ(Xt, At, Zt, Yt;π, η) for any π, η and , we decompose τ̂AMRIV
T − τ as follows:

τ̂AMRIV
T − τ =

1

T

T∑
t=1

ϕt(πt, η̂t)− τ

=
1

T

T∑
t=1

(ϕt(πt, η̂t)− E[ϕt(πt, η̂t) | Ht−1])︸ ︷︷ ︸
∆A

+
1

T

T∑
t=1

(E[ϕt(πt, η̂t) | Ht−1]− τ)︸ ︷︷ ︸
∆B

We will now show that ∆A is Op(T
−1/2) via a similar argument as in Appendix D and ∆B is

Op

(
∥δ̂AT − δA∥2∥δ̂T − δ∥2

)
.

Write ∆A
t := ϕt(πt, η̂t) − E[ϕt(πt, η̂t) | Ht−1] and note that ∆A

t is an MDS by construction, i.e.
E[∆A

t | Ht−1] = 0. Let Ṽ (π) := Varπ(ϕt(π, η̃)) where Varπ indicates the variance over data where
Z ∼ Bern(π(Xt)). Thus, it suffices to show that E[(∆A

t )
2 | Ht−1]

p−→ σ2, where σ2 = Ṽ (π).
Then, the result follows by tracing the rest of the proof in Appendix D.

Write Λt := ϕt(πt, η̂t)− ϕt(πt, η̃) and note

Var
(
ϕt(πt, η̂t) | Ht−1

)
= Var

(
ϕt(πt, η̃) | Ht−1

)
+Var(Λt | Ht−1) + 2 Cov

(
ϕt(η̃),∆t | Ht−1

)
and thus ∣∣Var(ϕt(πt, η̂t) | Ht−1

)
−Var

(
ϕt(πt, η̃) | Ht−1

)∣∣
≤ Var(Λt | Ht−1) + 2

√
Var(Λt | Ht−1)Var(ϕt(πt, η̃) | Ht−1)

Since, Var(ϕt(πt, η̃) | Ht−1) is bounded by Assumption 3, we just need to show that Var(Λt |
Ht−1) = op(1):

Var(ϕt(πt, η̃) | Ht−1) ≤ E
[
(ϕt(πt, η̂t)− ϕt(πt, η̃))

2 | Ht−1

]
≤ C̃kt(∥δ̂t−1 − δ̃∥22 + ∥µ̂Y

t−1(0, ·)− µ̃Y (0, ·)∥22 + ∥µ̂A
t−1(0, ·)− µ̃A(0, ·)∥22 + ∥δ̂At−1 − δ̃A∥22)

(Parallelogram law)
= op(1) (Theorem assumptions)

where C̃ encompasses the constants ϵ and C from Assumption 3 and the theorem’s premise. Thus,
since Var

(
ϕt(πt, η̂t) | Ht−1

) p−→ Var(ϕt(πt, η̃) | Ht−1)
p−→ Ṽπ, we can use Theorem 8 form

Appendix D and retrace the same arguments to obtain ∆A = Op(T
−1/2) due to the Martingale CLT.

Now, we study ∆B :

∆B
t

= E[ϕt(πt, η̂t) | Ht−1]− E[δ(x)]
= E[E[ϕ(Xt, At, Zt, Yt;πt, η̂t) | Xt,Ht−1] | Ht−1]− E[δ(Xt) | Ht−1]

= E
[
E[ϕ(Xt, At, Zt, Yt;πt, η̂t) | Zt = 1, Xt,Ht−1]πt(Xt | Ht−1) | Ht−1]

+ E
[
E[ϕ(Xt, At, Zt, Yt;πt, η̂t) | Zt = 0, Xt,Ht−1](1− πt(Xt | Ht−1)) | Ht−1

]
− E[δ(Xt) | Ht−1]

= E

[
1

δ̂At−1(Xt)
(µY (1, Xt)− µA(1, Xt)δ̂t−1(Xt) + µ̂Y

t−1(0, Xt)− µ̂A
t−1(0, Xt)δ̂t−1(Xt))
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− 1

δ̂At−1(Xt)
(µY (0, Xt)− µA(0, Xt)δ̂t−1(Xt) + µ̂Y

t−1(0, Xt)− µ̂A
t−1(0, Xt)δ̂t−1(Xt))

+ δ̂t−1(Xt)− δt−1(Xt)

∣∣∣∣Ht−1

]

= E

[
1

δ̂At−1(Xt)
(δY (Xt)− δA(Xt)δ̂t−1(Xt)) + δ̂t−1(Xt)− δt−1(Xt)

∣∣∣∣Ht−1

]

= E

[
δA(Xt)

δ̂At−1(Xt)
(δ(Xt)− δ̂t−1(Xt)) + δ̂t−1(Xt)− δt−1(Xt)

∣∣∣∣Ht−1

]

= E

[
1

δ̂At−1(Xt)
(δA(Xt)− δ̂At−1(Xt))(δ(Xt)− δ̂t−1(Xt))

∣∣∣∣Ht−1

]
≤ C∥δ̂t−1 − δ∥2∥δ̂At−1 − δA∥2 (Assumption 3 and Cauchy-Schwarz)

Thus, ∆B
t isOp(∥δ̂T −δ∥2∥δ̂AT −δA∥2), as desired. Corollary 5 follows immediately by noting that if

either δ̂t−1 or δ̂At−1 are consistent(i.e. op(1)), then ∆B is also consistent and |τAMRIV
T − τ | = op(1).

F Experimental Details

This appendix provides additional details for the simulation experiments described in Section 7,
including exact hyperparameters, model components, and execution setup. All experiments were
run on a Perlmutter compute node with 256 CPU cores at the National Energy Research Scientific
Computing Center (NERSC) National Energy Research Scientific Computing Center [31] and
required approximately 40–50 minutes per configuration. Random Forests were implemented using
scikit-learn [35], and parallelization was handled via joblib. Full code for generating data,
running experiments, and reproducing all figures is available at https://github.com/CausalML/
Adaptive-IV, with instructions in the README.md.

Each estimator was evaluated on 1000 independent synthetic trials. Simulations were run over
T = 2000 rounds with a T0 = 200 burn-in period, and nuisance estimators were updated in mini-
batches of 200. For all adaptive methods, we applied the truncated optimal allocation policy from
Eq. (7), with a truncation schedule kt = 2/0.999t. Oracle methods used ground-truth nuisance
functions, while misspecified estimators were constructed by replacing µY (1, X) with a constant
regressor fit to the average oracle value.

Unless otherwise stated, outcome and residual variance functions were modeled via Random Forests
with 100 trees, maximum depth 5, and minimum leaf size 5. The compliance model µA(1, X)
was learned with a shallower forest (depth 3, minimum leaf size 30), and µA(0, X) was zero by
construction due to one-sided noncompliance. For the A2IPW estimator, we followed Kato et al. [25]
and estimated outcome means and second moments using random forests (depth 5, leaf size 100) and
used a Neyman-style allocation based on observed outcomes. All figures report results averaged over
replicates, with confidence intervals based on empirical standard errors.

F.1 Simulation Studies with Synthetic Data

We generate the data sequentially for each time t ∈ [1, T + T0] using the following one sided
noncompliance setup:

Xt ∼ Unif(0, 2)d, Zt ∼ Bern(πt(Xt | Ht−1)) (Covariates & Instrument)

µA(0, Xt) = 0, δA(Xt) = µA(1, Xt) = σ(2Xt[1]) (Compliance Scores)

Ct ∼ Bern(δA(Xt)), At = Ct · Zt (Treatment Assignment)
Ut = u(1− Ct) (Unobserved Confounder)
Yt = f(At, Xt) + Ut + ϵAt

, ϵAt
∼ Unif[−g(At, Xt), g(At, Xt)] (Outcome Function)

where T0 is the burn-in period, Ct is the (unknown) compliance indicator, σ is the logistic sigmoid,
Unif and Bern are the uniform and the Bernoulli distributions, respectively. We utilize the following
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instantiations for d, u, f, g:

d = 5

u = −2.0

f(A,X) = 1 +A+X[1] + 2a (X⊤β) + 0.75aX[1]2

g(A,X) =
√
3 · (v1 ·A+ (v0 ·X[1] + v1) · (1−A)), v0 = 4.0, v1 = 0.25

where X[1] denotes the first coordinate of the covariate vector X ∈ Rd and β ∈ Rd, β ∼
Unif[−1, 1]d is a parameter vector that is fixed over the 1000 simulations (we used a seed of 1 for re-
producibility purposes.). g(A,X) was chosen such that Var(ϵA | X) = v1·A+(v0·X[1]+v1)·(A−1)
where v0, v1 are constants.

F.2 Simulation Studies with Semi-Synthetic Data

To complement our synthetic evaluation, we conduct additional experiments using a semi-synthetic
setting derived from a real-world dataset collected by TripAdvisor. The original data-generating
process (DGP) was introduced by Syrgkanis et al. [42] and is publicly available on GitHub. In the
original A/B test, users were randomly assigned to one of two groups: group A (instrument Z = 1)
was offered a simplified membership sign-up experience, while group B (Z = 0) saw the default
interface. This encouragement increased the likelihood of signing up for a membership (treatment
A), though actual uptake remained endogenous due to user-specific factors.

The covariates X ∈ R10 capture rich pre-treatment user behavior and demographics. These include:
prior platform revenue, visit frequencies to different TripAdvisor sections (hotels, restaurants, experi-
ences, flights, and vacation rentals) over a 28-day pre-experimental window, engagement through
free channels (e.g., email), locale information, and operating system type. The binary treatment A
indicates whether the user became a member during the experiment, while the outcome Y records the
total number of days the user visited TripAdvisor during the study period.

We preserve the original covariate structure and instrument assignment mechanism, but modify
the outcome model to introduce heteroskedasticity by adding log-normal noise whose variance
depends on treatment status. This choice reflects the heavy-tailed nature of usage metrics in online
platforms [5, 28], and results in a more realistic and challenging estimation task. The full data-
generating process is provided below ("*" indicates same as original).

TripAdvisor Data-Generating Process. We simulate tuples (X,A(0), A(1), Y (0), Y (1)) via:

X ∼ TripAdvisor pre-treatment covariates, (∗)
ν ∼ Unif[−5, 5], (latent user heterogeneity∗)
A(1) ∼ Bernoulli (0.8 · σ(0.4X1 + ν)) , A(0) ∼ Bernoulli(0.006), (compliance∗)
ε1 ∼ LogNormal(0, σ1), ε0 ∼ LogNormal(0, σ0), (new: heavy-tailed errors)
Y (1) = f(X) + 2ν + 5 · I[X[1] > 0] + ε1, (potential outcome for A = 1∗)
Y (0) = 2ν + 5 · I[X[1] > 0] + ε0, (potential outcome for A = 0∗)

where σ0 = 1.5 and σ1 = 0.25, and the structural CATE function is defined as:

f(X) = 0.8 + 0.5 · ϕ(X1)− 3.0X[7],

with ϕ(X1) := 5 · I[X[1] > 5] + 10 · I[X1 > 15] + 5 · I[X1 > 20].

We illustrate our results on Figure 3. To maintain readability in the plots, we define the misspecified
outcome model µ̂Y (1, X) as the oracle µY (1, X) plus a constant shift.

Adaptivity. As shown in panel (a), adaptive allocation improves the efficiency of both the DM and
AMRIV estimators (particularly at larger T ), with AMRIV again approaching the oracle benchmark.
Interestingly, AMRIV, AMRIV-NA, and Oracle-NA slightly outperform the fully adaptive Oracle
in some regimes—likely due to extreme compliance scores in this DGP (δA(X) → 0), which
inflate the asymptotic variance when using oracle denominators. In contrast, estimators with learned
denominators can perform better in finite samples [26, 41]. This also helps explain the narrower
variance gap between AMRIV and AMRIV-NA relative to the synthetic setting, as the variance is
dominated by low-compliance regions rather than outcome variance between instrument arms.
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Figure 3: Performance of different estimators on TripAdvisor simulated data. (a) Efficiency: Nor-
malized MSE versus an oracle benchmark. (b) Consistency: MSE ± standard error. (c) Coverage:
Empirical coverage of 95% confidence intervals.

Consistency. Panel (b) confirms that AMRIV, AMRIV-NA, and DM all converge to the true τ , with
AMRIV variants consistently achieving lower error. As expected, A2IPW fails to converge due
to uncorrected confounding, while DM-MS diverges due to misspecification of δ(X). In contrast,
AMRIV-MS remains consistent—further validating the multiply-robust guarantee from Theorem 4.

Coverage. Panel (c) shows that AMRIV, AMRIV-NA, and AMRIV-MS maintain valid 95% con-
fidence interval coverage, consistent with the asymptotic normality result in Theorem 3. All other
estimators—including DM-MS and A2IPW—under-cover severely as T increases, reflecting bias
under misspecification or confounding.

G Limitations and Broader Impacts

Limitations

While AMRIV is grounded in semiparametric theory and achieves strong empirical performance, there
are several limitations we highlight. First, our method relies on standard IV identification assumptions
(Assumption 1) and the unconfounded compliance assumption (Assumption 2), which—while weaker
than ignorability—-are still untestable and may be violated in practice. In particular, the exclusion
restriction and the unconfounded assumption may not hold even in observational settings where
the instrument is randomized. Second, AMRIV assumes access to flexible, sequentially consistent
nuisance estimators, which may be difficult to train or tune in low-data regimes or in the presence
of heavy-tailed outcomes. Third, our analysis focuses on a binary instrument and binary treatment;
extending the framework to multi-valued or continuous instruments remains an open challenge.

Broader Impacts

This work contributes to the growing intersection of causal inference and adaptive experimentation,
enabling more data-efficient and statistically principled estimation in settings with noncompliance.
Potential applications include health interventions and online recommendation system, where exper-
imenters can encourage behavior but not enforce it. AMRIV allows experimenters to make better
use of limited resources while supporting robust inference under endogenous treatment selection
under unobserved confounding. However, we caution that the validity of conclusions drawn from
AMRIV hinges on the identification assumptions and data quality. In high-stakes settings, particularly
those involving marginalized or vulnerable populations, improper use or misinterpretation could lead
to harmful decisions. We strongly recommend pairing AMRIV with domain expertise, sensitivity
analysis, and uncertainty quantification to ensure responsible deployment and interpretation.
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