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Efficient Adaptive Experiments with Direct Treatments
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 Setting: Binary treatment 4 € {0, 1} with covariates X; online experiment:
observe X,, assign A; and observe outcome V; each round.

* Goal: Learn an adaptive policy (X | #;_4) at time t that minimizes the
asymptotic variance of the ATE and provide and estimator that achieves it.

« Motivation: Enable reliable early stopping by driving faster variance reduction.
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Efficient Adaptive Experiments with Direct Treatments

Historical data New unit : Neyman Allocation
Hy_q @ : 0.67
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Learned adaptive Assighment Outcome : 0.5 1.0 1.5 2.0
policy Ay ~ e (X¢) I o(1,X)/0(0,X)

 Classical Result: Neyman allocation — assigh more where (conditional)
outcome variance is larger.

JVar(Y | A =1,X) - a(1,X)
WNVar(Y [A=0,X)+/Var(Y [A=1,X) 0(0,X)+0(1,X)

T (X) =
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Noncompliance
Efficient Adaptive Experiments with DirectFreatments

Historical data
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Learned adaptive
policy

Assignment Endogenous Outcome
Zy ~ e (Xy) treatment

Motivating applications

 Noncompliance: We can assign an encouragement (instrumental variable), but
cannot enforce the treatment (e.g. ethical considerations, feasibility).

 Issue: A, is endogenous (affected by unobserved confounding) = naive A/B on
A; is biased; only the instrumental variable Z, is randomized.

IV Fix: Use Z; to identify the ATE and adapt the instrument policy instead.
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Optimal Policy with Noncompliance

Adaptive policy vs compliance

0.50

Fixed policy that minimizes asymptotic variance:

JVar(Y —A(X) | Z = 1,X) — Adaptive policy

JyVar(Y —A§(X) 1 Z = 0,X) +/Var(Y —AS(X) 1 Z = 1,X) | &
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n'(X) =

§YX) E[YIX=xZ=1]-E[Y|X=xZ=0]
SAX) E[A1X=x,Z=1]-E[A|X=x,Z=0]
( )

Y
54(x) (compliance factor)

0.30lNeymanallocation ™

S(X) =

« ATE Ildentification from Wang & Tchetgen Tchetgen (2018): T = E[§(x)].

« Under IV relevance, exclusion, randomization given X and unconfounded compliance

« Generalizes Neyman: balances outcome noise and compliance noise.
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Introducing the AMRIV
« AMRIV = Adaptive Multiply-Robust estimator for IV settings

[ Burn-in period ] : [ Adaptive collection ] [ Estimation ]
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Introducing the AMRIV
« AMRIV = Adaptive Multiply-Robust estimator for IV settings

[ Burn-in period ] : [ Adaptive collection ] [ Estimation ]
Fort=1..T: I
K Get X; \
* Assign

Z: ~ Bern(my (X))
Eg:my(X) =1/2

* Observe 4;,Y;

* Append to history

H
\=t{<xi,zi,Ai,m}??/
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Introducing the AMRIV
« AMRIV = Adaptive Multiply-Robust estimator for IV settings

[ Burn-in period ] : [ Adaptive collection ] [ Estimation ]

Fort =1..T,: : Fort=T,..T:

K Get X; \ | /Estimate " (X) N

e Estimate Var(Y —A86(X) | Z =2z,X) as 6(z,X) from H,_;.
a(1,Xx)

6(0,X)+46(1,X)

\* Truncate: (X | Hi_1):= min(1 — €;, max(e;, 7T;)) -

* Assign
Zy ~ Bern(my(X¢))
Eg:my(X) =1/2

* Observe 4;,Y;

* Append to history

ﬁt(X | Ht—1) —

H
\=t{<xi,zi,Ai,m}?j/
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Introducing the AMRIV
« AMRIV = Adaptive Multiply-Robust estimator for IV settings

[ Burn-in period ] : [ Adaptive collection ] [ Estimation ]
Fort =1..T,: ''Fort=T,..T:
K Get X; \ fEstimate " (X) N
e Assign e Estimate Var(Y —A86(X) | Z =2z,X) as 6(z,X) from H,_;.
Z, ~ Bern(my(X,)) 0(1,X)

7~Tt(X | Ht—1) —

6(0,X)+46(1,X)
\~ Truncate: (X | Hye_q):= min(1 — €, max(&, ;) 4

f Estimate ¢, \

* GetX;, setZ; ~ m(X;), observe A, Y.
* Estimate nuisances 7; from H;_; via cross-fitting.
* Impute the round t effect ¢, as

b = (Xt Zt, Ae, Ve s T, )
k where ¢ is the efficient influence function (EIF) of 7. /
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Eg:my(X) =1/2
* Observe 4;,Y;
* Append to history

H
\=t{<xi,zi,Ai,Yi>}?j/




Introducing the AMRIV
« AMRIV = Adaptive Multiply-Robust estimator for IV settings

* Observe 4;,Y;
* Append to history

H
\=t{<xi,zi,Ai,Yi>}?j/

\~ Truncate: (X | Hy_1):= min(1 — €;, max(€, 7))

4
N

/Estimate b

* GetX;, setZ; ~ m(X;), observe A, Y.

* Estimate nuisances 7; from H;_; via cross-fitting.
* Impute the round t effect ¢, as

G = d(Xt, Zt, A, Yey 5 0, )

k where ¢ is the efficient influence function (EIF) of 7.

)

[ Burn-in period ] I [ Adaptive collection ] [ Estimation ]
Fort = 1."T0; Fort = TO .. T: Att=T:
K Get X, \ /Estimate " (X) N K Estimate T as: \
e Assign e Estimate Var(Y —A86(X) | Z =2z,X) as 6(z,X) from H,_;.
~ FAMRIV —
Zy ~ Bern(my(Xy)) 7 (X | Hy_y) = = 0(1,{) Z bt
e (Calculate a-level

confidence
sequences:

[Le, Ue]

e Decide whether to

continue or stop
data collection
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Introducing the AMRIV

Theoretical properties:
 Efficient:

VT (#fMRY — 1) 5 W (0, Veps (m) )
with m = * achieving the minimum bound.

« Multiply-robust: Consistent if either §(X) or 64(X) is learned consistently;
AMRIV is 0,,(T~%2) if both §(X) and §4(X) are 0,(T~/*).

« Anytime-valid: Can build anytime valid asymptotic confidence sequences
(AsymCS) from online EIF variance = peek-safe early stopping.
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Experimental Results

T T
[ Efficiency ]|[ Consistency ]|[ Valid confidence intervals ]
| | .
Normalized MSE vs. horizon I o6 MSE vs. horizon I 95% Cl coverage vs. harizon
O R e T I Tt f 1 —e— AMRIV
C 18 ~4- AMRIV-NA
= ~.m- AMRIV-MS
“ujl'ﬁ_ o— DM
) A- DM-NA
1.4
= @ DM-MS
de 1.2 —eo— A2IPW
o - Qracle-NA
g 1.01 | , 1% 0.0 R - R —e— Oracle
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 | 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 | 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
T/1000 I T/1000 I T/1000

 Efficiency: Adaptivity improves efficiency of all estimators.

« Consistency: AMRIV-MS is consistent even when one of the nuisances is
misspecified, whereas the direct method DM-MS is not.

 Valid confidence intervals: AMRIV achieves nominal (95%) coverage unlike
non-robust methods.
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Summary of Contributions and Impact

Key Contributions:

« We proposed an adaptive IV framework for online experiments with
noncompliance and derived an optimal instrument assignment policy to
minimize asymptotic variance.

« We introduced AMRIV, an adaptive IV estimator that provides strong
theoretical guarantees: asymptotic efficiency, multiply-robust consistency,
and time-uniform confidence sequences.

« We validated our framework through simulations and real-world applications.
Broader Impact:

« We enabled adaptive experimentation when treatment isn’t assignable,
delivering more information, earlier stopping, and valid inference for
digital platforms, personalized medicine, and beyond.
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