
Efficient Adaptive Experimentation with Noncompliance

Miruna Oprescu, Brian M Cho, Nathan Kallus

Cornell University, Cornell Tech



Miruna Oprescu, Cornell Tech Efficient Adaptive Experimentation with Noncompliance 2

Efficient Adaptive Experiments with Direct Treatments

• Setting: Binary treatment 𝐴 ∈ 0, 1  with covariates 𝑋; online experiment: 

observe 𝑿𝒕, assign 𝑨𝒕 and observe outcome 𝒀𝒕 each round.

• Goal: Learn an adaptive policy 𝝅𝒕(𝑿 ∣ 𝓗𝒕−𝟏) at time 𝑡 that minimizes the 

asymptotic variance of the ATE and provide and estimator that achieves it.

• Motivation: Enable reliable early stopping by driving faster variance reduction.
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Efficient Adaptive Experiments with Direct Treatments

• Classical Result: Neyman allocation — assign more where (conditional) 

outcome variance is larger.

𝜋∗ 𝑋 =
Var(𝑌 ∣ 𝐴 = 1, 𝑋)

Var(𝑌 ∣ 𝐴 = 0, 𝑋) + Var(𝑌 ∣ 𝐴 = 1, 𝑋)
: =

𝜎(1, 𝑋)
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Efficient Adaptive Experiments with Direct Treatments
Noncompliance
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Motivating applications

• Noncompliance: We can assign an encouragement (instrumental variable), but 

cannot enforce the treatment (e.g. ethical considerations, feasibility).

• Issue: 𝑨𝒕 is endogenous (affected by unobserved confounding) ⇒ naive A/B on 

𝐴𝑡 is biased; only the instrumental variable 𝒁𝒕 is randomized.

• IV Fix: Use 𝑍𝑡 to identify the ATE and adapt the instrument policy instead.
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Optimal Policy with Noncompliance

Fixed policy that minimizes asymptotic variance:

𝝅∗ 𝑿 =
Var(𝑌 − 𝐴𝛿(𝑋) ∣ 𝑍 = 1, 𝑋)

Var(𝑌 − 𝐴𝛿(𝑋) ∣ 𝑍 = 0, 𝑋) + Var(𝑌 − 𝐴𝛿(𝑋) ∣ 𝑍 = 1, 𝑋)

where:

𝛿 𝑋 =
𝛿𝑌 𝑋

𝛿𝐴 𝑋
=

𝔼 𝑌 𝑋 = 𝑥, 𝑍 = 1 − 𝔼 𝑌 𝑋 = 𝑥, 𝑍 = 0

𝔼 𝐴 𝑋 = 𝑥, 𝑍 = 1 − 𝔼 𝐴 𝑋 = 𝑥, 𝑍 = 0

• ATE Identification from Wang & Tchetgen Tchetgen (2018): 𝜏 = 𝔼 𝛿(𝑥) .

• Under IV relevance, exclusion, randomization given 𝑋 and unconfounded compliance

• Generalizes Neyman: balances outcome noise and compliance noise.
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Introducing the AMRIV

• AMRIV = Adaptive Multiply-Robust estimator for IV settings

Burn-in period Adaptive collection Estimation



Miruna Oprescu, Cornell Tech Efficient Adaptive Experimentation with Noncompliance 7

Introducing the AMRIV

• AMRIV = Adaptive Multiply-Robust estimator for IV settings

Burn-in period Adaptive collection Estimation

• Get 𝑋𝑡

• Assign

𝑍𝑡 ∼ 𝐵𝑒𝑟𝑛(𝜋0(𝑋𝑡))

  E.g.: 𝜋0 𝑋 = 1/2

• Observe 𝐴𝑡, 𝑌𝑡

• Append to history

𝐻𝑡

= 𝑋𝑖 , 𝑍𝑖 , 𝐴𝑖 , 𝑌𝑖 𝑖=1
𝑛

For 𝒕 = 𝟏 … 𝑻𝟎:
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Introducing the AMRIV

• AMRIV = Adaptive Multiply-Robust estimator for IV settings

Burn-in period Adaptive collection Estimation

• Get 𝑋𝑡

• Assign

𝑍𝑡 ∼ 𝐵𝑒𝑟𝑛(𝜋0(𝑋𝑡))

  E.g.: 𝜋0 𝑋 = 1/2

• Observe 𝐴𝑡, 𝑌𝑡

• Append to history

𝐻𝑡

= 𝑋𝑖 , 𝑍𝑖 , 𝐴𝑖 , 𝑌𝑖 𝑖=1
𝑛

For 𝒕 = 𝟏 … 𝑻𝟎: For 𝒕 = 𝑻𝟎 … 𝑻:

Estimate 𝝅∗(𝑿)

• Estimate Var(𝑌 − 𝐴𝛿(𝑋) ∣ 𝑍 = 𝑧, 𝑋) as ො𝜎(𝑧, 𝑋) from 𝐻𝑡−1.

෤𝜋𝑡 𝑋 𝐻𝑡−1 =
ො𝜎(1, 𝑋)

ො𝜎 0, 𝑋 + ො𝜎(1, 𝑋)

• Truncate: 𝝅𝒕 𝑿 𝑯𝒕−𝟏 : = min(1 − 𝜖𝑡, max(𝜖𝑡, ෤𝜋𝑡))
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Introducing the AMRIV

• AMRIV = Adaptive Multiply-Robust estimator for IV settings

Burn-in period Adaptive collection Estimation

• Get 𝑋𝑡

• Assign

𝑍𝑡 ∼ 𝐵𝑒𝑟𝑛(𝜋0(𝑋𝑡))

  E.g.: 𝜋0 𝑋 = 1/2

• Observe 𝐴𝑡, 𝑌𝑡

• Append to history

𝐻𝑡

= 𝑋𝑖 , 𝑍𝑖 , 𝐴𝑖 , 𝑌𝑖 𝑖=1
𝑛

For 𝒕 = 𝟏 … 𝑻𝟎: For 𝒕 = 𝑻𝟎 … 𝑻:

Estimate 𝝅∗(𝑿)

• Estimate Var(𝑌 − 𝐴𝛿(𝑋) ∣ 𝑍 = 𝑧, 𝑋) as ො𝜎(𝑧, 𝑋) from 𝐻𝑡−1.

෤𝜋𝑡 𝑋 𝐻𝑡−1 =
ො𝜎(1, 𝑋)

ො𝜎 0, 𝑋 + ො𝜎(1, 𝑋)

• Truncate: 𝝅𝒕 𝑿 𝑯𝒕−𝟏 : = min(1 − 𝜖𝑡, max(𝜖𝑡, ෤𝜋𝑡))

Estimate 𝝓𝒕

• Get 𝑋𝑡, set 𝑍𝑡 ∼ 𝜋𝑡(𝑋𝑡), observe 𝐴𝑡, Y𝑡. 
• Estimate nuisances ො𝜂𝑡 from 𝐻𝑡−1 via cross-fitting.
• Impute the round 𝑡 effect 𝜙𝑡 as

 𝝓𝒕 = 𝜙(𝑋𝑡, 𝑍𝑡, 𝐴𝑡, 𝑌𝑡 , ; 𝜋𝑡, ො𝜂𝑡)

      where 𝜙 is the efficient influence function (EIF) of 𝜏.



Miruna Oprescu, Cornell Tech Efficient Adaptive Experimentation with Noncompliance 10

Introducing the AMRIV

• AMRIV = Adaptive Multiply-Robust estimator for IV settings

Burn-in period Adaptive collection Estimation

• Get 𝑋𝑡

• Assign

𝑍𝑡 ∼ 𝐵𝑒𝑟𝑛(𝜋0(𝑋𝑡))

  E.g.: 𝜋0 𝑋 = 1/2

• Observe 𝐴𝑡, 𝑌𝑡

• Append to history

𝐻𝑡

= 𝑋𝑖 , 𝑍𝑖 , 𝐴𝑖 , 𝑌𝑖 𝑖=1
𝑛

For 𝒕 = 𝟏 … 𝑻𝟎: For 𝒕 = 𝑻𝟎 … 𝑻: At 𝒕 = 𝑻:

Estimate 𝝅∗(𝑿)

• Estimate Var(𝑌 − 𝐴𝛿(𝑋) ∣ 𝑍 = 𝑧, 𝑋) as ො𝜎(𝑧, 𝑋) from 𝐻𝑡−1.

෤𝜋𝑡 𝑋 𝐻𝑡−1 =
ො𝜎(1, 𝑋)

ො𝜎 0, 𝑋 + ො𝜎(1, 𝑋)

• Truncate: 𝝅𝒕 𝑿 𝑯𝒕−𝟏 : = min(1 − 𝜖𝑡, max(𝜖𝑡, ෤𝜋𝑡))

Estimate 𝝓𝒕

• Get 𝑋𝑡, set 𝑍𝑡 ∼ 𝜋𝑡(𝑋𝑡), observe 𝐴𝑡, Y𝑡. 
• Estimate nuisances ො𝜂𝑡 from 𝐻𝑡−1 via cross-fitting.
• Impute the round 𝑡 effect 𝜙𝑡 as

 𝝓𝒕 = 𝜙(𝑋𝑡, 𝑍𝑡, 𝐴𝑡, 𝑌𝑡 , ; 𝜋𝑡, ො𝜂𝑡)

      where 𝜙 is the efficient influence function (EIF) of 𝜏.

• Estimate 𝜏 as:

Ƹ𝜏𝑇
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𝑇
෍
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sequences:

[𝐿𝑡, 𝑈𝑡]

• Decide whether to 
continue or stop 
data collection 
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Introducing the AMRIV

Theoretical properties:

• Efficient: 

𝑇 Ƹ𝜏𝑇
𝐴𝑀𝑅𝐼𝑉 − 𝜏 → 𝒩 0, 𝑉𝑒𝑓𝑓 𝜋

    with 𝜋 = 𝜋∗ achieving the minimum bound.

• Multiply-robust: Consistent if either 𝛿(𝑋) or 𝛿𝐴(𝑋) is learned consistently; 

AMRIV is 𝑂𝑝(𝑇−1/2) if both 𝛿(𝑋) and 𝛿𝐴(𝑋) are 𝑜𝑝(𝑇−1/4).

• Anytime-valid: Can build anytime valid asymptotic confidence sequences 

(AsymCS) from online EIF variance ⇒ peek-safe early stopping.
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Experimental Results

Efficiency Consistency Valid confidence intervals

• Efficiency: Adaptivity improves efficiency of all estimators.

• Consistency: AMRIV-MS is consistent even when one of the nuisances is 

misspecified, whereas the direct method DM-MS is not. 

• Valid confidence intervals:  AMRIV achieves nominal (95%) coverage unlike 

non-robust methods.
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Summary of Contributions and Impact

Key Contributions:

• We proposed an adaptive IV framework for online experiments with 

noncompliance and derived an optimal instrument assignment policy to 

minimize asymptotic variance.

• We introduced AMRIV, an adaptive IV estimator that provides strong 

theoretical guarantees: asymptotic efficiency, multiply-robust consistency, 

and time-uniform confidence sequences.

• We validated our framework through simulations and real-world applications.

Broader Impact:

• We enabled adaptive experimentation when treatment isn’t assignable, 

delivering more information, earlier stopping, and valid inference for 

digital platforms, personalized medicine, and beyond.
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