

Integrating Causal Inference and Deep Learning for Spatiotemporal Decision-Making

Miruna Oprescu

Joint work with David K. Park², Xihaier Luo², Shinjae Yoo², and Nathan Kallus¹

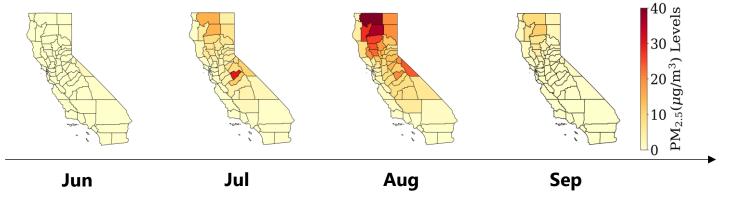
¹ Cornell University, Cornell Tech

² Computing and Data Sciences, Brookhaven National Laboratory

Decision-Making in Spatiotemporal Contexts

Spatiotemporal Data

 Observations that vary across both spatial and temporal dimensions. E.g.: PM_{2.5} levels during the 2018 California wildfires.



• Often sourced from satellites, ground sensors, and weather stations, capturing how conditions evolve day by day and region by region.

Spatiotemporal Interventions

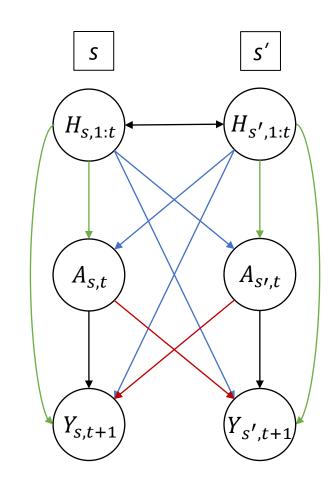
 Real-world actions or policies applied across space and time—such as wildfire prevention or pollution control measures—that shape local and regional outcomes (e.g., PM_{2.5} levels, public health).

Decision-Making in Spatiotemporal Contexts

Notation

- Time $t \in \{1, ..., T\}$, spatial index $s \in \mathbb{G}$.
- Features (Covariates): $X_{s,1}, X_{s,2}, \dots, X_{s,T}$.
- Interventions (Treatments): $A_{s,1}, A_{s,2}, \dots, A_{s,T} \in \{0,1\}$.
- **Outcomes:** $Y_{s,1}, Y_{s,2}, ..., Y_{s,T}$.
- **History:** $H_{s,1:t} = (X_{s,1:t}, Y_{s,1:t}, A_{s,1:t-1}).$
- Shorthand:

$$W_{s,1:t} = \{W_{s,1}, W_{s,2}, \dots, W_{s,t}\}, \ W_{1:t} = \{W_{s,1:t} : \forall s \in \mathbb{G}\}$$
for any $W \in \{X, A, Y, H\}.$



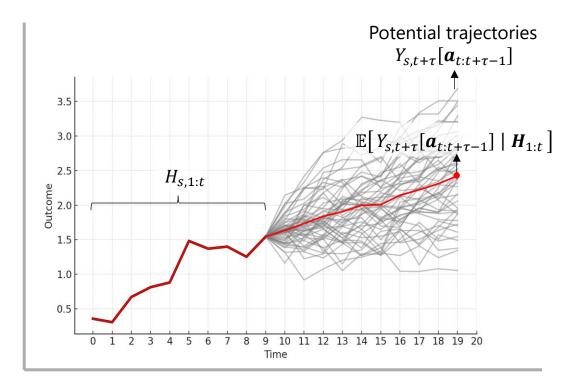
Schematic of the spatiotemporal data (X,A,Y,H) across time t and location s.

Decision-Making in Spatiotemporal Contexts

Counterfactuals:

 $\mathbb{E}[\boldsymbol{Y}_{t+\tau}[\boldsymbol{a}_{t:t+\tau-1}] \mid \boldsymbol{H}_{1:t} = \boldsymbol{h}_{1:t}]$

- Average potential outcome after τ time steps under a series of fixed τ interventions,
 a_{t:t+τ-1}, given an observed history h_{1:t}.
- "What if stricter wildfire prevention measures had been implemented 2 weeks earlier—how would PM2.5 and health outcomes change over τ time steps?"



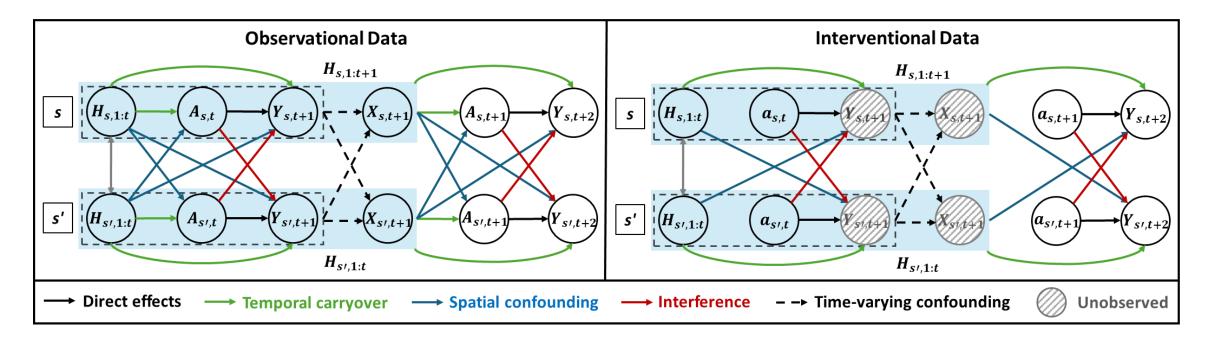
• Treatment Effects:

 $\mathbb{E}[Y_{t+\tau}[a_{t:t+\tau-1}] | H_{1:t} = h_{1:t}] - \mathbb{E}[Y_{t+\tau}[a'_{t:t+\tau-1}] | H_{1:t} = h_{1:t}]$

• "What was the effect of wildfire smoke on health outcomes over τ time steps?"

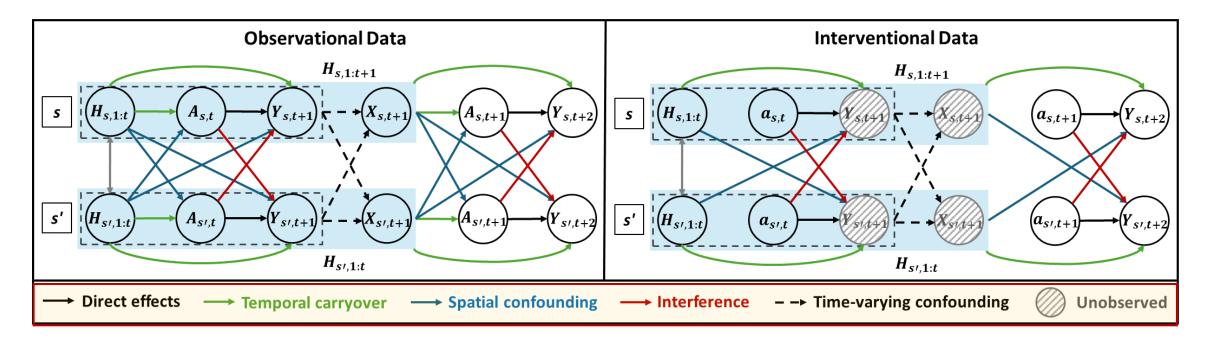
1. Single Spatiotemporal Chain

- We often have only one "realization" of space and time, rather than multiple parallel series from the same system.
- Challenging to isolate causal effects in this setting, since many methods rely on having multiple independent samples to tease out the impact of interventions.



2. Complex Space-Time Dependencies

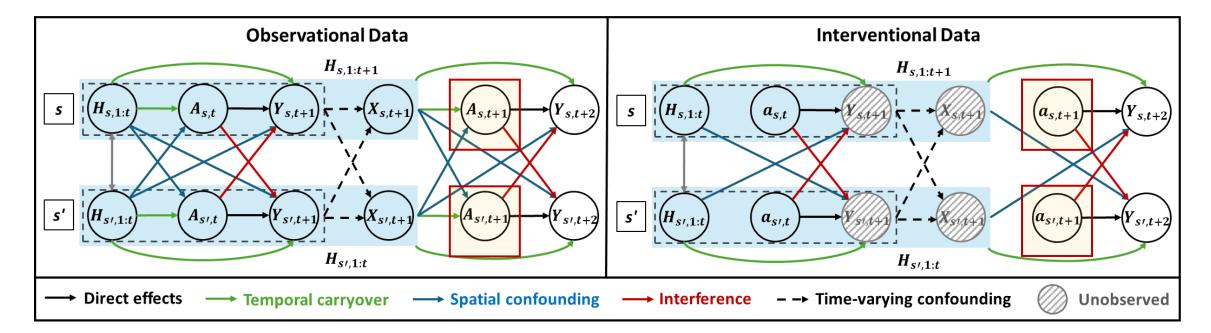
- Observations at different locations and times can strongly influence one another, complicating standard causal analyses.
- Most ST causal inference works use strong modeling priors (e.g., linear models, Poisson processes, etc.).



3(a). Observational vs. Interventional Data

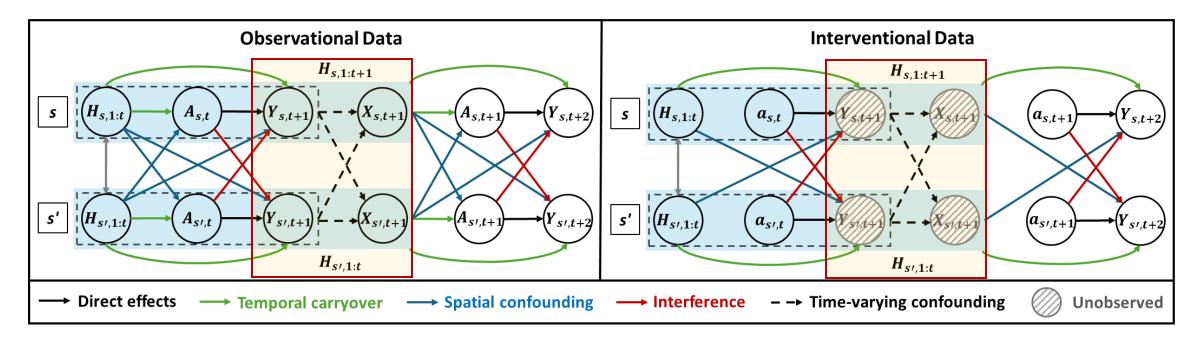
- We need to learn features of an interventional distribution (new policy scenarios) from observational data, where interventions were applied differently (or non-randomly).
- In other words:

$$\mathbb{E}[Y_{t+\tau}[a_{t:t+\tau-1}] \mid H_{1:t} = h_{1:t}] \neq \mathbb{E}[Y_{t+\tau} \mid H_{1:t} = h_{1:t}, A_{t:t+\tau-1} = a_{t:t+\tau-1}]$$



3(b). Time-Varying Confounders

- A confounder is any variable that affects both treatments and outcomes, and must be controlled to avoid biased causal estimates.
- A *time-varying confounder* is a variable that affects both future treatments and outcomes, creating feedback loops (e.g. past interventions shape future covariates, which in turn drive subsequent interventions and outcomes).



Talk Overview

- 1. Identification of Spatiotemporal Causal Effects
 - Representation-Based Time Invariance
 - Causal Inference with Time-Varying Confounders
- 2. Estimation of Spatiotemporal Causal Effects
 - GST-UNet Architecture
 - GST-UNet Training and Inference
- 3. Empirical Results
 - Synthetic Data
 - Effect of Wildfires on Respiratory Illness

Talk Overview

- 1. Identification of Spatiotemporal Causal Effects
 - Representation-Based Time Invariance
 - Causal Inference with Time-Varying Confounders
- 2. Estimation of Spatiotemporal Causal Effects
 - GST-UNet Architecture
 - GST-UNet Training and Inference
- 3. Empirical Results
 - Synthetic Data
 - Effect of Wildfires on Respiratory Illness

Using a Single Spatiotemporal Chain

Assumption 1: Representation-Based Time Invariance

• There exists an embedding $\phi: \mathcal{H} \times \mathcal{A} \to Z \subset \mathbb{R}^h$ such that, once we condition on $z = \phi(H_{1:t}, A_t)$ the distribution of (X_{t+1}, Y_{t+1}) does not explicitly depend on t. Formally:

$$p(X_{t+1}, Y_{t+1} | \phi(H_{1:t}, A_t) = z) = p(X_{t+1}, Y_{t+1} | \phi(H_{1:t}, A_{t}) = z)$$

Splicing the Single Time Series

• For each $t \in \{1, ..., T - \tau\}$, define a "prefix"

$$\boldsymbol{P}_t^{\tau} = (\boldsymbol{X}_{1:t+\tau}, \boldsymbol{A}_{1:t+\tau}, \boldsymbol{Y}_{1:t+\tau})$$

- Under representation-based time invariance, conditioning on $\phi(H_{1:t}, A_t)$ renders the distribution of $Y_{t+\tau}$ independent of t.
- We can then write expectations over these prefixes as

 $\mathbb{E}_{\boldsymbol{P}}[\boldsymbol{Y}_{t+\tau} \mid \boldsymbol{\phi}(\boldsymbol{H}_{1:t}, \boldsymbol{A}_t)]$

Causal Inference with Time-Varying Confounders

Assumption 2 (Standard Causal Inference Assumptions)

- Consistency: $Y_{t+\tau} = Y_{t+\tau}[a_{t:t+\tau-1}]$
- Positivity: $P(A_{s,t} = a_{s,t} | H_{1:t} = h_{1:t}) > 0$ for any feasible $h_{1:t}$.
- Sequential Unconfoundedness: $Y_{t+1:T}[a_{t+1:T}] \perp A_t \mid H_{1:t}$.

Theorem 1 (Identification under Assumptions 1&2 – Part 1) Let $H_{1:t+k}^a = (H_{1:t+k}, [A_{1:t-1}, a_{t:t+k-1}], Y_{1:t+k})$. Then:

$$\mathbb{E}[Y_{t+\tau}[a_{t:t+\tau-1}] \mid H_{1:t} = h_{1:t}] \\= \int \mathbb{E}_P[Y_{t+\tau} \mid \phi(h_{1:t+\tau-1}^a, a_{t+\tau-1})] \prod_{k=1}^{\tau} p(x_{t+k}, y_{t+k} \mid \phi(h_{1:t+k-1}^a, a_{t+k-1})) d(x_{t+k}, y_{t+k})$$

$$= \mathbb{E}_{P}[\dots \mathbb{E}_{P}[Y_{t+\tau} \mid \phi(H^{a}_{1:t+\tau-1}, a_{t+\tau-1})] \mid \phi(H^{a}_{1:t+\tau-2}, a_{t+\tau-2})] \dots \mid \phi(H_{1:t}, a_{t}) = \phi(h_{1:t}, a_{t})]$$

Iterative G-Computation

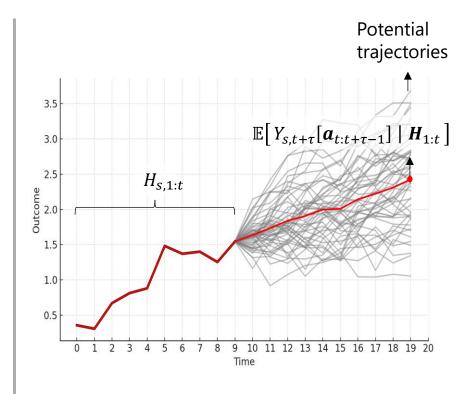
Bonus: Time-Varying Confounders without Interference

Estimation Strategy via IPW Estimator (No Interference)

$$\hat{Y}_{t+\tau} = \left(\prod_{l=t}^{t+\tau} \frac{\mathbb{I}[A_l = a_l]}{\hat{\pi}(a_l \mid H_{1:l})}\right) Y_{t+\tau}$$

 $\widehat{\mathbb{E}}[Y_{t+\tau}[a_{t:t+\tau-1}] \mid H_{1:t} = h_{1:t}] = \mathbb{E}[\widehat{Y}_{t+\tau} \mid H_{1:t} = h_{1:t}]$

- There is also a doubly robust alternative (see [6]).
- Can work with *unstructured interference* under additional assumptions, such as known exposure function and exposure ignorability.



Talk Overview

- 1. Identification of Spatiotemporal Causal Effects
 - Representation-Based Time Invariance
 - Causal Inference with Time-Varying Confounders
- 2. Estimation of Spatiotemporal Causal Effects
 - GST-UNet Architecture
 - GST-UNet Training and Inference
- 3. Empirical Results
 - Synthetic Data
 - Effect of Wildfires on Respiratory Illness

Estimation of Spatiotemporal Causal Effects via G-Computation

Task: Estimate

$$\mathbb{E}_{P}[\dots \mathbb{E}_{P}[Y_{t+\tau} | \phi(H^{a}_{1:t+\tau-1}, a_{t+\tau-1})] | \phi(H^{a}_{1:t+\tau-2}, a_{t+\tau-2})] \dots \\ | \phi(H_{1:t}, a_{t}) = \phi(h_{1:t}, a_{t})]$$

Iterative G-Computation via Recursive Regression [3]

1. Last Step:

 $Q_{\tau}(H_{1:t+\tau-1}, A_{t+\tau-1}) = \mathbb{E}_{P}[Y_{t+\tau} | \phi(H_{1:t+\tau-1}, A_{t+\tau-1})]$

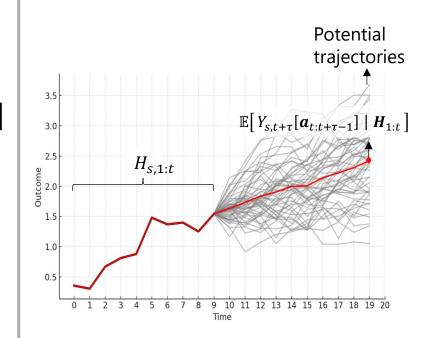
2. Recursive Steps (for
$$k = \tau - 1, ..., 1$$
):

$$Q_{k}(H_{1:t+k-1}, A_{t+k-1})$$

$$= \mathbb{E}_{P}[Q_{k+1}(H_{1:t+k}^{a}, A_{t+k}) | \phi(H_{1:t+k-1}, A_{t+k-1})]$$

3. Result:

$$\mathbb{E}_{P}[Y_{t+\tau}[a_{t:t+\tau-1}] \mid \phi(H_{1:t}, a_{t}) = \phi(h_{1:t}, a_{t})] = Q_{1}(h_{1:t}, a_{t})$$



Estimation of Spatiotemporal Causal Effects via G-Computation

Task: Estimate

$$\mathbb{E}_{P}[\dots \mathbb{E}_{P}[Y_{t+\tau} | \phi(H^{a}_{1:t+\tau-1}, a_{t+\tau-1})] | \phi(H^{a}_{1:t+\tau-2}, a_{t+\tau-2})] \dots \\ | \phi(H_{1:t}, a_{t}) = \phi(h_{1:t}, a_{t})]$$

Iterative G-Computation via Recursive Regression [3]

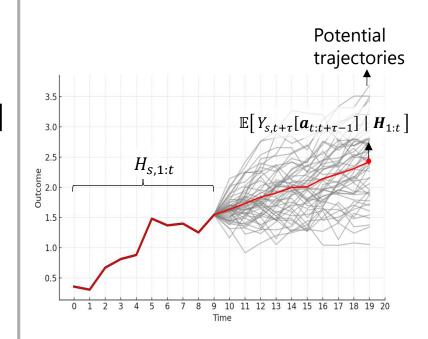
1. Last Step:

$$\widehat{Q}_{\tau}(\boldsymbol{H}_{1:t+\tau-1},\boldsymbol{A}_{t+\tau-1}) = \widehat{\mathbb{E}}_{P} \left[\boldsymbol{Y}_{t+\tau} \mid \widehat{\phi}(\boldsymbol{H}_{1:t+\tau-1},\boldsymbol{A}_{t+\tau-1}) \right]$$

2. Recursive Steps (for
$$k = \tau - 1, ..., 1$$
):
 $\hat{Q}_k(H_{1:t+k-1}, A_{t+k-1})$
 $= \widehat{\mathbb{E}}_P [\widehat{Q}_{k+1}(H_{1:t+k}^a, A_{t+k}) | \widehat{\phi}(H_{1:t+k-1}, A_{t+k-1})$

3. Result:

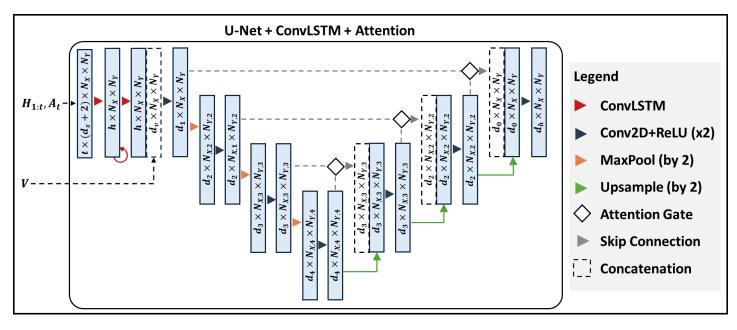
$$\widehat{\mathbb{E}}_{P}[\boldsymbol{Y}_{t+\tau}[\boldsymbol{a}_{t:t+\tau-1}] \mid \phi(\boldsymbol{H}_{1:t}, \boldsymbol{a}_{t}) = \phi(\boldsymbol{h}_{1:t}, \boldsymbol{a}_{t})] = \widehat{Q}_{1}(\boldsymbol{h}_{1:t}, \boldsymbol{a}_{t})$$



Learning the Spatiotemporal Embedding ϕ

Approach: Use neural networks to capture spatiotemporal patterns

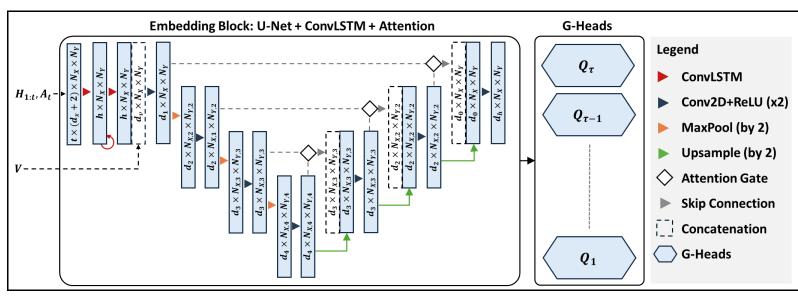
- U-Net for spatial dependencies [1]
 - Encoder-decoder architecture that captures multi-scale spatial features.
- **ConvLSTM** for temporal dynamics
 - Merges convolution and LSTM to model temporal dynamics within a single series.
- Attention to highlight key spatial regions and time steps [2].



Introducing the GST-UNet (Our Work)

G-computation Spatio-Temporal UNet (GST-UNet):

- **Spatiotemporal Embedding:** U-Net + ConvLSTM + attention gates.
- **Neural Causal Modules:** G-computation heads (e.g. shallow feed-forward networks or convolutional layers) for iterative adjustment.
- **Key Innovation:** Flexible, end-to-end approach that avoids strong modeling assumptions and properly accounts for time-varying confounders.



GST-UNet End-to-End Architecture

GST-UNet Training and Inference

Algorithm 1 GST-UNet Training and Inference

- 1: Input: Horizon τ , prefix data $\{\mathbf{P}_t^{\tau}\}_{t=1}^{T-\tau}$, interventions $\mathbf{a}_{t:t+\tau-1}$, curriculum schedule $\alpha_k^{(e)}$, total epochs E.
- 2: Initialize: parameters θ (U-Net embedding + G-heads).
- 3: for $e = 1 \dots E$ do
- 4: for $k = \tau \dots 1$ do
- 5: (Supervision) For each prefix i, predict outcomes:

$$\widehat{Y}_{t+k}^{(i)} = Q_k(\phi(\mathbf{H}_{1:t+k-1}^{(i)}, \mathbf{A}_{t+k-1}^{(i)}); \theta)$$

6: (Generation (detached)) For each prefix i, generate pseudo-outcomes:

$$\widetilde{Y}_{t+k}^{(i)} = \begin{cases} Q_k \Big(\phi \big((\mathbf{H}_{1:t+k-1}^{\mathbf{a}})^{(i)}, \, \mathbf{a}_{t+k-1}^{(i)} \big); \, \theta \Big), & k < \tau, \\ Y_{t+\tau}^{(i)}, & k = \tau. \end{cases}$$

where the observed $\mathbf{A}_{t:t+k-2}$'s were replaced with $\mathbf{a}_{t:t+k-2}$ in the history.

- 7: end for
- 8: (Loss aggregation) Compute the overall MSE loss

$$\mathcal{L}(\theta; e) = \frac{1}{\tau} \sum_{k=1}^{\tau} \alpha_k^{(e)} \sum_i (\widehat{Y}_{t+k}^{(i)} - \widetilde{Y}_{t+k+1}^{(i)})^2$$

9: (Backward pass) Update θ by backpropagation. 10: end for

11: (Inference) Given a $\mathbf{h}_{1:t}$, return $Q_1(\phi(\mathbf{h}_{1:t}, \mathbf{a}_t); \hat{\theta})$.

GST-UNet Training and Inference

Curriculum Training:
$$\mathcal{L}(\theta; e) = \frac{1}{\tau} \sum_{k=1}^{\tau} \alpha_k^{(e)} \sum_i \left(\widehat{Y}_{t+k}^{(i)} - \widetilde{Y}_{t+k+1}^{(i)} \right)^2$$

Curriculum Options:

• No curriculum: $\alpha_k^{(e)} = 1$.

Issue: the later heads (1, 2, ...) train on noise while the earlier heads (τ , τ – 1, ...) learn. Can (and will) converge to suboptimal solution.

• Sequential head training: $\alpha_k^{(e)} = \mathbb{I}[e_k \le e < e_{k+1}]$ for some increasing e_k .

Issue: each Q_k head might attempt to tailor ϕ to its own objective (ϕ is much more expressive than Q_k), leading to misaligned training signals.

• **Hybrid curriculum:** let $p(e) = \min\{\tau, \lceil \frac{e}{e_c} \rceil\}$, where e_c is the curriculum period.

$$\label{eq:ak} \alpha_k^{(e)} = \begin{cases} \frac{1}{p(e)}, & \mbox{if } k \in \{\tau, \tau-1, \dots, \tau-p(e)+1\} \\ 0, & \mbox{otherwise} \end{cases}$$

Talk Overview

- 1. Identification of Spatiotemporal Causal Effects
 - Representation-Based Time Invariance
 - Causal Inference with Time-Varying Confounders
- 2. Estimation of Spatiotemporal Causal Effects
 - GST-UNet Architecture
 - GST-UNet Training and Inference

3. Empirical Results

- Synthetic Data
- Effect of Wildfires on Respiratory Illness

Simulation Results on Synthetic Data

• **Data:** We generate T = 200 steps of a 64×64 grid of observational data from:

$$\begin{aligned} \boldsymbol{X}_{t} &= \alpha_{0} + \alpha_{1}\boldsymbol{X}_{t-1} + \alpha_{2}\boldsymbol{A}_{t-1} + \alpha_{3}\boldsymbol{K}_{X} * \boldsymbol{X}_{t-1} + \boldsymbol{\epsilon}_{X} \\ \boldsymbol{A}_{t} &\sim Bern\left(\sigma\left(\beta_{1}\left(\beta_{0} + \frac{1}{L}\sum_{l=0}^{L-1}\boldsymbol{K}_{A} * \boldsymbol{X}_{t-l}\right)\right)\right)\right) \\ \boldsymbol{Y}_{t} &= \gamma_{0} + \gamma_{1}(\boldsymbol{K}_{YA} * \boldsymbol{A}_{t-1}) + \gamma_{2}\frac{1}{L}\sum_{l=1}^{L}\boldsymbol{K}_{YX} * \boldsymbol{X}_{t-l} + \gamma_{3}\boldsymbol{Y}_{t-1} + \boldsymbol{\epsilon}_{Y} \end{aligned}$$

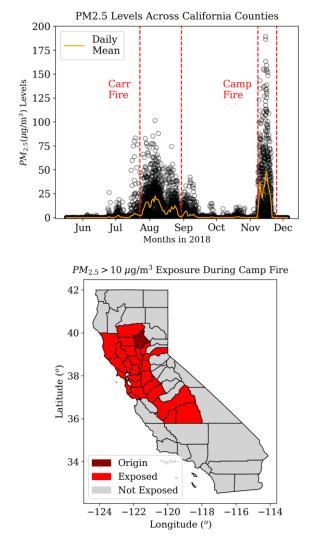
Note: "*" is the convolution operation and β_1 controls the time-varying confounding.

•	Results	au	Model	$\beta_1 = 0.0$	$\beta_1 = 0.5$	$\beta_1 = 1.0$	$\beta_1 = 1.5$	$\beta_1 = 2.0$	$\beta_1 = 2.5$	$\beta_1 = 3.0$
(RMSE):		5	UNet+ STCINet GST-UNet w/o Attention GST-UNet w/o Curriculum GST-UNet	0.28 ± 0.00 0.29 ± 0.00 0.50 ± 0.00 0.69 ± 0.00 0.33 ± 0.00 (+17.9%)	$\begin{array}{c} 0.36 \pm 0.00 \\ 0.38 \pm 0.01 \\ 0.46 \pm 0.00 \\ 0.64 \pm 0.00 \\ \textbf{0.35 \pm 0.00} \\ \textbf{(-2.8\%)} \end{array}$	$\begin{array}{c} 0.54 \pm 0.01 \\ 0.62 \pm 0.01 \\ 0.51 \pm 0.00 \\ 0.63 \pm 0.00 \\ \textbf{0.40 \pm 0.00} \\ (-25.9\%) \end{array}$	$\begin{array}{c} 0.71 \pm 0.01 \\ 0.80 \pm 0.01 \\ 0.45 \pm 0.01 \\ 0.61 \pm 0.01 \\ \textbf{0.44 \pm 0.00} \\ (\textbf{-38.0\%}) \end{array}$	$\begin{array}{c} 0.81 \pm 0.01 \\ 0.90 \pm 0.01 \\ 0.47 \pm 0.01 \\ 0.61 \pm 0.01 \\ \textbf{0.40} \pm \textbf{0.01} \\ \textbf{0.40} \pm \textbf{0.01} \\ \textbf{(-50.6\%)} \end{array}$	$\begin{array}{c} 0.87 \pm 0.01 \\ 1.03 \pm 0.01 \\ 0.45 \pm 0.01 \\ 0.61 \pm 0.01 \\ \textbf{0.42 \pm 0.01} \\ \textbf{(-51.7\%)} \end{array}$	$\begin{array}{c} 0.97 \pm 0.01 \\ 1.07 \pm 0.01 \\ 0.52 \pm 0.01 \\ 0.61 \pm 0.01 \\ \textbf{0.50} \pm \textbf{0.01} \\ \textbf{(-48.5\%)} \end{array}$
		10	UNet+ STCINet GST-UNet w/o Attention GST-UNet w/o Curriculum GST-UNet	0.28 ± 0.00 0.31 ± 0.00 0.42 ± 0.00 0.62 ± 0.00 0.38 ± 0.00 (+35.7%)	$\begin{array}{c} 0.61 \pm 0.00 \\ 0.68 \pm 0.00 \\ 0.60 \pm 0.00 \\ 0.88 \pm 0.00 \\ \textbf{0.55 \pm 0.00} \\ \textbf{(-9.8\%)} \end{array}$	$1.18 \pm 0.00 \\ 1.25 \pm 0.00 \\ 0.61 \pm 0.00 \\ 1.02 \pm 0.00 \\ 0.68 \pm 0.00 \\ (-42.4\%)$	$1.45 \pm 0.00 \\ 1.47 \pm 0.01 \\ 0.79 \pm 0.01 \\ 1.08 \pm 0.01 \\ 0.73 \pm 0.01 \\ (-49.7\%)$	1.71 ± 0.01 1.60 ± 0.01 1.07 ± 0.01 1.12 ± 0.01 0.85 ± 0.01 (-50.3%)	1.73 ± 0.01 1.66 ± 0.01 0.91 ± 0.01 1.15 ± 0.01 0.85 ± 0.01 (-50.9%)	1.75 ± 0.01 1.94 ± 0.01 1.02 ± 0.01 1.17 ± 0.01 0.85 ± 0.01 (-51.4%)

Miruna Oprescu, Cornell Tech

Case Study: Effect of Wildfire Smoke on Respiratory Illness during the 2018 California Camp Fire

- Data (2018 California, county-level data [4]):
 - **Covariates:** wind, temperature, precipitation, humidity, shortwave radiation
 - **"Treatment":** $PM_{2.5} > 10 \ \mu g/m^3$ (unhealthy)
 - Outcome: Respiratory hospitalizations.
- Counterfactual/ Policy-Relevant Question:
 - How did unhealthy PM_{2.5} (Camp Fire smoke) affect respiratory hospitalization?
 - If Camp Fire never occurred (i.e. $PM_{2.5}$ never exceeded 10 $\mu g/m^3$), how would the daily respiratory hospitalizations differ during the same time period?



Case Study: Effect of Wildfire Smoke on Respiratory Illness during the 2018 California Camp Fire

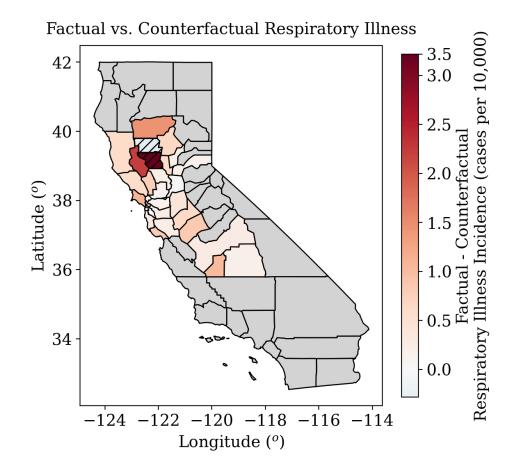
Results

The GST-UNet estimates that the peak period of the Camp Fire (November 8–17, 2018) contributed to an excess 4650 ([1890, 6535] 95% CI) (465 per day)¹ respiratory-related hospitalizations in the affected counties.

Baseline Predictions

- UNet+: 3911 ([-899, 5202] 95% Cl)
- **STCINet:** 343 ([-3077, 3281] 95% Cl)

¹**Note:** This result aligns qualitatively with [4], who used a synthetic controls method and found about 259 excess daily cases from November 8–December 5 (including lower-intensity days, hence a smaller daily estimate).



Observed minus predicted daily respiratory admissions at Camp Fire peak. Hashed areas mark small-population counties (<30,000).

Miruna Oprescu, Cornell Tech

References

[1] O. Ronneberger, P. Fischer, T. Brox. *U-Net: Convolutional Networks for Biomedical Image Segmentation*. MICCAI 2015.

[2] O. Oktay, J. Schlemper, L. Le Folgoc, et al. *Attention U-Net: Learning Where to Look for the Pancreas*. MIDL 2018.

[3] J. Robins and M. Hernán. *Estimation of the causal effects of time-varying exposures.* In Chapman & Hall/CRC Handbooks of Modern Statistical Methods, 2008.

[4] N. Letellier, M. Hale, K. U. Salim, et al. *Applying a two-stage generalized synthetic control approach to quantify the heterogeneous health effects of extreme weather events: A 2018 large wildfire in California event as a case study.* Environmental Epidemiology, 2025.

[5] D. Frauen, K. Hess, and S. Feuerriegel. *Model-agnostic meta-learners for estimating heterogeneous treatment effects over time*. ICLR 2025.

Thank You!

Paper: *GST-UNet: Spatiotemporal Causal Inference with Time-Varying Confounders.* Miruna Oprescu, David K. Park, Xihaier Luo, Shinjae Yoo, Nathan Kallus (Under Review, 2025).

Contact: miruna@cs.cornell.edu.

Case Study: Effect of Wildfire Smoke on Respiratory Illness during the 2018 California Camp Fire

- Estimated county-level increases in respiratory ED visits attributable to the wildfire event, with 95% bootstrap confidence intervals.
- Population is reported in units of 10,000. Counties marked with * (hashed on the map) have smaller populations, which leads to greater uncertainty.

						Fac	tual vs. Counterfactual Respiratory Il
County	Mean	2.5%	97.5%	Population ($\times 10^4$)	Interval Width / Population	42	
Tehama	37	-126	158	6.4	44.4	10	{ }
Butte	168	30	325	23.0	12.8	40	
Glenn*	-52	-262	39	2.8	107.6	(₀) 20	
Colusa*	13	-158	107	2.1	124.0	ude (°) 38	
Sutter	-18	-170	70	9.6	24.9	95 14	
Napa	81	-41	192	13.9	16.8		
Lake	103	-66	203	6.4	41.8	34	
Solano	38	-79	173	44.6	5.6	51	
Sacramento	202	-107	484	153.9	3.8		
				•	·		-124 -122 -120 -118 -116 -11

Longitude (°)