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Decision-Making in Spatiotemporal Contexts

• Spatiotemporal Data 

• Observations that vary across both spatial and temporal dimensions. E.g.: PM2.5 levels 

during the 2018 California wildfires.

• Often sourced from satellites, ground sensors, and weather stations, capturing how 

conditions evolve day by day and region by region.

• Spatiotemporal Interventions 

• Real‐world actions or policies applied across space and time—such as wildfire prevention 

or pollution control measures—that shape local and regional outcomes (e.g., PM2.5 levels, 

public health).
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• Notation

• Time 𝑡 ∈ 1, … , 𝑇 , spatial index 𝑠 ∈ 𝔾.

• Features (Covariates): 𝑋𝑠,1, 𝑋𝑠,2, … , 𝑋𝑠,𝑇. 

• Interventions (Treatments): 𝐴𝑠,1, 𝐴𝑠,2, … , 𝐴𝑠,𝑇 ∈ {0,1}.

• Outcomes: 𝑌𝑠,1, 𝑌𝑠,2, … , 𝑌𝑠,𝑇 .

• History: 𝐻𝑠,1:𝑡 = 𝑋𝑠,1:𝑡 , 𝑌𝑠,1:𝑡 , 𝐴𝑠,1:𝑡−1 .

• Shorthand:

 𝑊𝑠,1:𝑡 = 𝑊𝑠,1, 𝑊𝑠,2, … , 𝑊𝑠,𝑡 , 𝑾1:𝑡 = {𝑊𝑠,1:𝑡: ∀𝑠 ∈ 𝔾}

     for any 𝑊 ∈ 𝑋, 𝐴, 𝑌, 𝐻 .
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Decision-Making in Spatiotemporal Contexts

𝐻𝑠,1:𝑡 𝐻𝑠′,1:𝑡

𝐴𝑠,𝑡 𝐴𝑠′,𝑡

𝑌𝑠,𝑡+1 𝑌𝑠′,𝑡+1

s s’

Schematic of the spatiotemporal data 

(𝑋,𝐴,𝑌,𝐻) across time 𝑡 and location 𝑠.
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Decision-Making in Spatiotemporal Contexts

• Counterfactuals: 

𝔼 𝒀𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡 = 𝒉1:𝑡  

• Average potential outcome after 𝜏 time steps 

under a series of fixed 𝜏 interventions, 

𝒂𝑡:𝑡+𝜏−1, given an observed history 𝒉1:𝑡.

• “What if stricter wildfire prevention measures 

had been implemented 2 weeks earlier—how 

would PM2.5 and health outcomes change 

over 𝜏 time steps?”

𝔼 𝑌𝑠,𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡

𝐻𝑠,1:𝑡

Potential trajectories

𝑌𝑠,𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1

• Treatment Effects:

𝔼 𝒀𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡 = 𝒉1:𝑡  - 𝔼 𝒀𝑡+𝜏 𝒂′𝑡:𝑡+𝜏−1 𝑯1:𝑡 = 𝒉1:𝑡

• “What was the effect of wildfire smoke on health outcomes over 𝜏 time steps?”
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Challenges in Spatiotemporal Causal Inference

1. Single Spatiotemporal Chain

• We often have only one “realization” of space and time, rather than multiple parallel series 

from the same system.

• Challenging to isolate causal effects in this setting, since many methods rely on having 

multiple independent samples to tease out the impact of interventions.
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Challenges in Spatiotemporal Causal Inference

2. Complex Space-Time Dependencies

• Observations at different locations and times can strongly influence one another, 

complicating standard causal analyses.

• Most ST causal inference works use strong modeling priors (e.g., linear models, Poisson 

processes, etc.). 
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Challenges in Spatiotemporal Causal Inference

3(a). Observational vs. Interventional Data

• We need to learn features of an interventional distribution (new policy scenarios) from 

observational data, where interventions were applied differently (or non-randomly).

• In other words:

𝔼 𝒀𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡 = 𝒉1:𝑡 ≠ 𝔼 𝒀𝑡+𝜏 𝑯1:𝑡 = 𝒉1:𝑡, 𝑨𝑡:𝑡+𝜏−1 = 𝒂𝑡:𝑡+𝜏−1
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Challenges in Spatiotemporal Causal Inference

3(b). Time-Varying Confounders

• A confounder is any variable that affects both treatments and outcomes, and must be 

controlled to avoid biased causal estimates.

• A time-varying confounder is a variable that affects both future treatments and outcomes, 

creating feedback loops (e.g. past interventions shape future covariates, which in turn 

drive subsequent interventions and outcomes).
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Talk Overview

1. Identification of Spatiotemporal Causal Effects

• Representation-Based Time Invariance

• Causal Inference with Time-Varying Confounders

2. Estimation of Spatiotemporal Causal Effects

• GST-UNet Architecture

• GST-UNet Training and Inference

3. Empirical Results

• Synthetic Data

• Effect of Wildfires on Respiratory Illness 
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Using a Single Spatiotemporal Chain

Assumption 1: Representation-Based Time Invariance

• There exists an embedding 𝜙: ℋ × 𝒜 → 𝑍 ⊂ ℝℎ such that, once we condition on 𝑧 =
𝜙(𝑯1:𝑡 , 𝑨𝑡) the distribution of (𝑿𝑡+1, 𝒀𝑡+1) does not explicitly depend on 𝑡. Formally:

𝑝 𝑿𝑡+1, 𝒀𝑡+1 𝜙 𝑯1:𝑡, 𝑨𝑡 = 𝑧 = 𝑝 𝑿𝑡′+1, 𝒀𝑡′+1 𝜙 𝑯1:𝑡′, 𝑨𝑡′ = 𝑧

Splicing the Single Time Series

• For each 𝑡 ∈  {1, … , 𝑇 − 𝜏}, define a “prefix”

𝑷𝑡
𝜏 = (𝑿1:𝑡+𝜏, 𝑨1:𝑡+𝜏, 𝒀1:𝑡+𝜏)

• Under representation-based time invariance, conditioning on 𝜙(𝑯1:𝑡, 𝑨𝑡) renders the 

distribution of 𝒀𝑡+𝜏 independent of 𝑡.

• We can then write expectations over these prefixes as

𝔼𝑷[𝒀𝑡+𝜏 ∣ 𝜙 𝑯1:𝑡, 𝑨𝑡 ]
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Causal Inference with Time-Varying Confounders

Assumption 2 (Standard Causal Inference Assumptions)

• Consistency: 𝒀𝑡+𝜏 = 𝒀𝑡+𝜏[𝒂𝑡:𝑡+𝜏−1]

• Positivity: 𝑷 𝐴𝑠,𝑡 = 𝑎𝑠,𝑡 𝑯1:𝑡 = 𝒉1:𝑡 > 0 for any feasible 𝒉1:𝑡. 

• Sequential Unconfoundedness: 𝒀𝑡+1:𝑇 𝒂𝑡+1:𝑇 ⊥ 𝑨𝑡 ∣ 𝑯1:𝑡.

Theorem 1 (Identification under Assumptions 1&2 – Part 1)

Let 𝑯1:𝑡+𝑘
𝒂 = 𝑯1:𝑡+𝑘 , 𝑨1:𝑡−1, 𝒂𝒕:𝑡+𝑘−1 , 𝒀1:𝑡+𝑘 . Then:

𝔼 𝒀𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡 = 𝒉1:𝑡  

= න 𝔼𝑃 𝑌𝑡+𝜏 𝜙 𝒉1:𝑡+𝜏−1
𝒂 , 𝒂𝑡+𝜏−1 ෑ

𝑘=1

𝜏

𝑝 𝑥𝑡+𝑘 , 𝑦𝑡+𝑘 𝜙 𝒉1:𝑡+𝑘−1
𝒂 , 𝒂𝑡+𝑘−1 𝑑(𝑥𝑡+𝑘 , 𝑦𝑡+𝑘)

 = 𝔼𝑃 … 𝔼𝑃 𝑌𝑡+𝜏 𝜙 𝑯1:𝑡+𝜏−1
𝒂 , 𝒂𝑡+𝜏−1 𝜙 𝑯1:𝑡+𝜏−2

𝒂 , 𝒂𝑡+𝜏−2 … ∣ 𝜙 𝑯1:𝑡, 𝒂𝑡 = 𝜙 𝒉1:𝑡, 𝒂𝑡 ]  

Iterative G-Computation
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Bonus: Time-Varying Confounders without Interference

෠𝑌𝑡+𝜏 = ෑ

𝑙=𝑡

𝑡+𝜏
𝕀[𝐴𝑙 = 𝑎𝑙]

ො𝜋(𝑎𝑙 ∣ 𝐻1:𝑙)
𝑌𝑡+𝜏

෡𝔼 𝑌𝑡+𝜏 𝑎𝑡:𝑡+𝜏−1 𝐻1:𝑡 = ℎ1:𝑡 = 𝔼[ ෠𝑌𝑡+𝜏 ∣ 𝐻1:𝑡 = ℎ1:𝑡]

• There is also a doubly robust alternative (see [6]).

• Can work with unstructured interference under 

additional assumptions, such as known exposure 

function and exposure ignorability. 

𝔼 𝑌𝑠,𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡

𝐻𝑠,1:𝑡

Potential 

trajectories

Estimation Strategy via IPW Estimator (No Interference)
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Estimation of Spatiotemporal Causal Effects via G-Computation

Task: Estimate

𝔼𝑃 … 𝔼𝑃 𝑌𝑡+𝜏 𝜙 𝑯1:𝑡+𝜏−1
𝒂 , 𝒂𝑡+𝜏−1 𝜙 𝑯1:𝑡+𝜏−2

𝒂 , 𝒂𝑡+𝜏−2 …

 ∣ 𝜙 𝑯1:𝑡, 𝒂𝑡 = 𝜙 𝒉1:𝑡 , 𝒂𝑡 ]

Iterative G-Computation via Recursive Regression [3]

1. Last Step: 

𝑄𝜏 𝑯1:𝑡+𝜏−1, 𝑨𝑡+ 𝜏−1 = 𝔼𝑃 𝒀𝑡+𝜏 𝜙(𝑯1:𝑡+𝜏−1, 𝑨𝑡+ 𝜏−1 )

2. Recursive Steps (for 𝑘 = 𝜏 − 1, … , 1):

𝑄𝑘 𝑯1:𝑡+𝑘−1, 𝑨𝑡+ 𝑘−1 

 = 𝔼𝑃 𝑄𝑘+1 𝑯1:𝑡+𝑘
𝒂 , 𝑨𝑡+ 𝑘 𝜙(𝑯1:𝑡+𝑘−1, 𝑨𝑡+ 𝑘−1 )

3. Result:

 𝔼𝑃 𝒀𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝜙(𝑯1:𝑡, 𝒂𝑡) = 𝜙(𝒉1:𝑡, 𝒂𝑡) = 𝑄1 𝒉1:𝑡, 𝒂𝑡  

 

𝔼 𝑌𝑠,𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡

𝐻𝑠,1:𝑡

Potential 

trajectories
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Estimation of Spatiotemporal Causal Effects via G-Computation

Task: Estimate

𝔼𝑃 … 𝔼𝑃 𝑌𝑡+𝜏 𝜙 𝑯1:𝑡+𝜏−1
𝒂 , 𝒂𝑡+𝜏−1 𝜙 𝑯1:𝑡+𝜏−2

𝒂 , 𝒂𝑡+𝜏−2 …

 ∣ 𝜙 𝑯1:𝑡, 𝒂𝑡 = 𝜙 𝒉1:𝑡 , 𝒂𝑡 ]

Iterative G-Computation via Recursive Regression [3]

1. Last Step: 

෠𝑄𝜏 𝑯1:𝑡+𝜏−1, 𝑨𝑡+ 𝜏−1 = ෡𝔼𝑃 𝒀𝑡+𝜏
෠𝜙(𝑯1:𝑡+𝜏−1, 𝑨𝑡+ 𝜏−1 )

2. Recursive Steps (for 𝑘 = 𝜏 − 1, … , 1):

෠𝑄𝑘 𝑯1:𝑡+𝑘−1, 𝑨𝑡+ 𝑘−1 

 = ෡𝔼𝑃
෠𝑄𝑘+1 𝑯1:𝑡+𝑘

𝒂 , 𝑨𝑡+ 𝑘 
෠𝜙(𝑯1:𝑡+𝑘−1, 𝑨𝑡+ 𝑘−1 )

3. Result:

෡𝔼𝑃 𝒀𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝜙(𝑯1:𝑡, 𝒂𝑡) = 𝜙(𝒉1:𝑡, 𝒂𝑡) = ෠𝑄1 𝒉1:𝑡, 𝒂𝑡

𝔼 𝑌𝑠,𝑡+𝜏 𝒂𝑡:𝑡+𝜏−1 𝑯1:𝑡

𝐻𝑠,1:𝑡

Potential 

trajectories
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Learning the Spatiotemporal Embedding 𝜙

Approach: Use neural networks to capture spatiotemporal patterns

• U-Net for spatial dependencies [1]

• Encoder-decoder architecture that captures multi-scale spatial features.

• ConvLSTM for temporal dynamics

• Merges convolution and LSTM to model temporal dynamics within a single series.

• Attention to highlight key spatial regions and time steps [2].
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Introducing the GST-UNet (Our Work)

G-computation Spatio-Temporal UNet (GST-UNet):

• Spatiotemporal Embedding: U-Net + ConvLSTM + attention gates.

• Neural Causal Modules: G-computation heads (e.g. shallow feed-forward networks or 

convolutional layers) for iterative adjustment.

• Key Innovation: Flexible, end-to-end approach that avoids strong modeling assumptions and 

properly accounts for time-varying confounders.

GST-UNet End-to-End Architecture
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GST-UNet Training and Inference
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GST-UNet Training and Inference

Curriculum Training: ℒ 𝜃; 𝑒 =
1

𝜏
σ𝑘=1

𝜏 𝜶𝒌
(𝒆) σ𝑖

෡𝒀𝑡+𝑘
𝑖

− ෩𝒀𝑡+𝑘+1
𝑖

2

 Curriculum Options: 

• No curriculum: 𝛼𝑘
(𝑒)

= 1.

Issue: the later heads (1, 2, … ) train on noise while the earlier heads (𝜏, 𝜏 − 1, …) learn. Can 

(and will) converge to suboptimal solution. 

• Sequential head training: 𝛼𝑘
(𝑒)

= 𝕀[𝑒𝑘 ≤ 𝑒 < 𝑒𝑘+1] for some increasing 𝑒𝑘.

Issue: each 𝑄𝑘 head might attempt to tailor 𝜙 to its own objective (𝜙 is much more 

expressive than 𝑄𝑘), leading to misaligned training signals. 

• Hybrid curriculum: let 𝑝 𝑒 = min{𝜏, ⌈
𝑒

𝑒𝑐
⌉}, where 𝑒𝑐 is the curriculum period.

𝛼𝑘
(𝑒)

= ൞

1

𝑝 𝑒
, 𝑖𝑓 𝑘 ∈ {𝜏, 𝜏 − 1, … , 𝜏 − 𝑝 𝑒 + 1} 

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Simulation Results on Synthetic Data

• Data: We generate 𝑇 = 200 steps of a 64 × 64 grid of observational data from:

𝑿𝑡 = 𝛼0 + 𝛼1𝑿𝑡−1 + 𝛼2𝑨𝑡−1 + 𝛼3𝐾𝑋 ∗ 𝑿𝑡−1 + 𝜖𝑋

𝑨𝑡 ∼ 𝐵𝑒𝑟𝑛 𝜎 𝛽1 𝛽0 +
1

𝐿
෍

𝑙=0

𝐿−1

𝐾𝐴 ∗ 𝑿𝑡−𝑙  

                                         𝒀𝑡 = 𝛾0 + 𝛾1(𝐾𝑌𝐴 ∗ 𝑨𝑡−1) + 𝛾2
1

𝐿
σ𝑙=1

𝐿 𝐾𝑌𝑋 ∗ 𝑿𝑡−𝑙 + 𝛾3𝒀𝑡−1 + 𝜖𝑌

     Note: “*” is the convolution operation and 𝛽1 controls the time-varying confounding. 

• Results 

     (RMSE):



• Data (2018 California, county-level data [4]):

• Covariates: wind, temperature, precipitation, 

humidity, shortwave radiation  

• “Treatment”: PM2.5 >10 𝜇𝑔/𝑚3 (unhealthy)

• Outcome: Respiratory hospitalizations.

• Counterfactual/ Policy-Relevant Question:

• How did unhealthy PM2.5 (Camp Fire smoke) affect 

respiratory hospitalization?

• If Camp Fire never occurred (i.e. PM2.5 never exceeded 10 

𝜇𝑔/𝑚3), how would the daily respiratory hospitalizations 

differ during the same time period?
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Case Study: Effect of Wildfire Smoke on Respiratory Illness 
during the 2018 California Camp Fire
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Case Study: Effect of Wildfire Smoke on Respiratory Illness 
during the 2018 California Camp Fire

Results

The GST-UNet estimates that the peak period 

of the Camp Fire (November 8–17, 2018) 

contributed to an excess 4650 ([1890, 6535] 

95% CI) (465 per day)1 respiratory-related 

hospitalizations in the affected counties.

Observed minus predicted daily respiratory admissions at Camp 

Fire peak. Hashed areas mark small‐population counties (<30,000).

1 Note: This result aligns qualitatively with [4], who used a synthetic 

controls method and found about 259 excess daily cases from 

November 8–December 5 (including lower‐intensity days, hence a 

smaller daily estimate).

Baseline Predictions

• UNet+:   3911 ([–899, 5202] 95% CI)

• STCINet: 343 ([–3077, 3281] 95% CI)
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Thank You!

Paper: GST-UNet: Spatiotemporal Causal Inference with Time-Varying Confounders. 

Miruna Oprescu, David K. Park, Xihaier Luo, Shinjae Yoo, Nathan Kallus (Under Review, 2025). 

Contact: miruna@cs.cornell.edu.

mailto:miruna@cs.cornell.edu
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Case Study: Effect of Wildfire Smoke on Respiratory Illness 
during the 2018 California Camp Fire

• Estimated county-level increases in respiratory ED visits attributable to the 

wildfire event, with 95% bootstrap confidence intervals.

• Population is reported in units of 10,000. Counties marked with * (hashed on 

the map) have smaller populations, which leads to greater uncertainty.
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