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Abstract

Estimating causal effects from spatiotemporal
data is a key challenge in fields such as public
health, social policy, and environmental science,
where controlled experiments are often infeasi-
ble. However, existing causal inference meth-
ods relying on observational data face significant
limitations: they depend on strong structural as-
sumptions to address spatiotemporal challenges
– such as interference, spatial confounding, and
temporal carryover effects – or fail to account for
time-varying confounders. These confounders,
influenced by past treatments and outcomes, can
themselves shape future treatments and outcomes,
creating feedback loops that complicate tradi-
tional adjustment strategies. To address these
challenges, we introduce the GST-UNet (G-
computation Spatio-Temporal UNet), a novel
end-to-end neural network framework designed
to estimate treatment effects in complex spatial
and temporal settings. The GST-UNet leverages
regression-based iterative G-computation to ex-
plicitly adjust for time-varying confounders, pro-
viding valid estimates of potential outcomes and
treatment effects. To the best of our knowledge,
the GST-UNet is the first neural model to ac-
count for complex, non-linear dynamics and time-
varying confounders in spatiotemporal interven-
tions. We demonstrate the effectiveness of the
GST-UNet through extensive simulation studies
and showcase its practical utility with a real-world
analysis of the impact of wildfire smoke on respi-
ratory hospitalizations during the 2018 California
Camp Fire. Our results highlight the potential of
GST-UNet to advance spatiotemporal causal in-
ference across a wide range of policy-driven and
scientific applications.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Environmental hazards, public health interventions, and
large-scale socio-economic policies often require under-
standing complex cause-and-effect relationships across
space and time (Reid et al., 2016b; Papadogeorgou et al.,
2019; Song et al., 2020). For instance, when evaluating
air quality interventions, policymakers need to assess how
industrial regulations affect both immediate local health out-
comes and broader regional impacts that evolve over time.
These applications demand robust methods for estimating
causal effects from observational spatiotemporal data.

However, spatiotemporal causal inference poses unique chal-
lenges. First, outcomes at each location are typically influ-
enced by both local and neighboring covariates and inter-
ventions, leading to spatial confounding and interference.
Second, observations exhibit strong temporal dependencies,
with the effects of interventions “carrying over” in time.
Finally, time-varying confounders—covariates that both in-
fluence and are influenced by past treatments and outcomes—
create feedback loops that violate standard assumptions of
independence over time. Consider, for example, how air
quality policies are often implemented: governments may
impose stricter regulations in response to poor air quality
and high hospitalization rates, which in turn affect future air
quality and health outcomes. Moreover, when estimating
effects, we aim to understand the impact of different inter-
vention sequences at specific locations given the observed
history—a more challenging task than estimating average
effects across space or time.

Current approaches to spatiotemporal causal inference ei-
ther rely on restrictive modeling assumptions that may not
capture real-world complexity, or employ flexible neural
networks that are limited to single time points, independent
time series, or settings without time-varying confounding
(see Section 2 for a comprehensive overview). Further com-
plicating matters, spatiotemporal settings often provide only
a single realization of the process over time, rather than
multiple independent time series.

To bridge this methodological gap, we propose GST-UNet
(G-computation Spatiotemporal UNet), a novel end-to-end
neural network framework designed to estimate treatment
effects in complex spatiotemporal settings. GST-UNet
addresses the key challenges of interference, spatial con-
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founding, temporal carryover, and time-varying confound-
ing by combining two powerful approaches: a U-Net-based
encoder-decoder network for capturing spatial dependencies,
and a regression-based, iterative G-computation procedure
(Bang and Robins, 2005; Robins and Hernan, 2008) for
adjusting for time-varying covariates. This integration en-
ables valid estimation of potential outcomes while flexibly
modeling complex dynamics across the spatial grid.

Our contributions are threefold: (1) We introduce the
GST-UNet model architecture and provide theoretical foun-
dations and implementation details for its iterative G-
computation scheme—to the best of our knowledge, this
is the first neural model to account for complex spatial
dynamics and time-varying confounders in spatiotemporal
interventions; (2) We demonstrate GST-UNet’s effective-
ness through extensive simulation studies designed to show-
case key spatiotemporal complexities and time-varying con-
founders; and (3) We illustrate its practical utility through a
real-world analysis of wildfire smoke impacts on respiratory
hospitalizations during the 2018 Camp Fire in California.

2. Related Work
We summarize the most relevant prior work here, with a
more detailed discussion in Appendix A.

Classical Spatiotemporal Causal Inference. Earlier spa-
tiotemporal causal inference methods (e.g., spatial econo-
metrics (Anselin, 2013), difference-in-differences (Keele
and Titiunik, 2015), and synthetic controls (Ben-Michael
et al., 2022)) rely on strong assumptions (e.g., parallel
trends) and often fail to address interference or time-varying
confounders. More recent classical approaches, on the other
hand, typically estimate average effects at the regional level
or rely on structural and modeling assumptions that may
not hold in real-world spatiotemporal contexts (Wang, 2021;
Christiansen et al., 2022; Papadogeorgou et al., 2022; Zhang
and Ning, 2023; Zhou et al., 2024).

Machine Learning for Spatiotemporal Modeling. Ma-
chine learning models (e.g., convolutional and recurrent
networks-based methods (Shi et al., 2015; Zhang et al.,
2017), or graph-based approaches (Li et al., 2017; Wu et al.,
2019)) capture spatiotemporal patterns for prediction but
lack formal causal adjustments.

Time Series Causal Inference. Time-series causal infer-
ence often uses recurrent or transformer-based methods
(Bica et al., 2020; Seedat et al., 2022; Melnychuk et al.,
2022) but assumes independent time series, ignoring poten-
tial interference effects. Although iterative G-computation
(Bang and Robins, 2005; Robins and Hernan, 2008) or
marginal structural models (Robins et al., 2000) can handle
time-varying confounders, most ML extensions (Lim, 2018;
Li et al., 2021; Hess et al., 2024) exclude interference or

cross-series confounding.

Neural-Based Spatiotemporal Causal Inference. In the
context of neural spatiotemporal models, Tec et al. (2023)
integrate spatial representations for causal inference, ac-
counting for spatial confounding and leveraging temporal
data to train a UNet model. However, they do not address
feedback effects from lagged or time-varying confounders.
Most similar to our work, Ali et al. (2024) present a climate-
focused model that shares certain architectural similarities
but emphasizes prediction rather than adjusting for time-
varying confounders, leaving causal identification concerns
largely unaddressed.

3. Problem Formulation
Spatiotemporal Data. We model the observed data as ran-
dom variables on a discrete spatial domain represented by
an NX × NY lattice: S = {(i, j) | i ∈ [NX ], j ∈ [NY ]},
where [N ] = {1, . . . , N} denotes the index set. Time is in-
dexed by t ∈ [T ]. At each spatial location s = (i, j) at time
t, we observe a tuple (Xs,t, As,t, Ys,t), where As,t ∈ {0, 1}
represents a binary treatment (or intervention), Ys,t ∈ R is a
continuous outcome of interest, and Xs,t ∈ RdX is a vector
of time-varying covariates (e.g. local weather conditions,
pollution levels, or socioeconomic indicators). Additionally,
each location s is associated with static features Vs ∈ Rdv

(e.g. geographical characteristics and socioeconomic indi-
cators). While we focus on binary interventions for clarity,
the methods generalize to more complex treatments. Con-
ceptually, the data forms a 3D spatiotemporal tensor of
size T × NX × NY , though in practice, observations may
be incomplete. Missing data can be accommodated using
masking techniques during downstream modeling.

To streamline notation, we use boldface symbols for ran-
dom variables defined over the entire spatial domain. For
U ∈ {X, A, Y }, let Ut denote its value at time t, and let
Ut:t+τ = (Ut, . . . , Ut+τ ) denote its value over a time
interval. For a specific location s, we write Us,t:t+τ =
(Us,t, . . . , Us,t+τ ). The history up to time t is denoted by
H1:t = (X1:t, A1:t−1, Y1:t, V) for the entire spatial do-
main and Hs,1:t = (Xs,1:t, As,1:t−1, Ys,1:t) for a specific
location s. Specific instantiations of these random variables
are denoted using lowercase letters (e.g., u ∈ {x, a, y, h}).

Quantities of Interest. Our primary goal is to estimate
location-specific Conditional Average Potential Outcomes
(CAPOs) for a sequence of future spatiotemporal interven-
tions, conditioned on observed history. Our approach builds
on Rubin’s potential outcomes framework (Rubin, 1978;
Robins and Hernan, 2008; Robins et al., 2000), which we
extend to accommodate spatiotemporal settings. More con-
cretely, we consider a future time horizon of length τ ≥ 1
and a predetermined interventional sequence at:t+τ−1 ap-
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GST-UNet: Spatiotemporal Causal Inference with Time-Varying Confounders

Figure 1. Observational data (left) versus interventional data (right) for a horizon τ = 2 across multiple locations (s, s′). Green arrows
indicate temporal carryover, blue arrows show spatial confounding, and red arrows depict interference; dashed arrows denote time-varying
confounding, and dashed circles represent unobserved variables at inference time. Under the intervention (right), treatments are set
independently of confounders, and the full history is not observed for the entire horizon.

plied across the spatial domain starting at time t. Our goal
is to estimate the potential outcomes at time t + τ , denoted
as Yt+τ [at:t+τ−1]. In particular, we aim to compute:

E[Yt+τ [at:t+τ−1] | H1:t = h1:t] (1)

which represents the CAPOs at time t+τ +1 under the given
treatment sequence. Given two different interventional se-
quences at:t+τ and a′

t:t+τ , a related secondary goal is to
estimate the location specific Conditional Average Treat-
ment Effect (CATE), given by:

E[Yt+τ [at:t+τ−1] − Yt+τ [a′
t:t+τ−1] | H1:t = h1:t]

Although we focus primarily on CAPOs, CATEs and other
effect measures can be derived similarly.

Assumptions. Identification of CAPOs from observational
data relies on standard causal inference assumptions. Ad-
ditionally, our setup relies on observing only a single spa-
tiotemporal outcome path. This prevents direct estimation
of the CAPOs in Eq. (1) – which relies on an expectation
over multiple data samples – without additional assumptions.
We therefore introduce the following assumptions:

Assumption 3.1 (Standard Causal Inference Assumptions).
We assume the following properties hold: (Consistency)
Yt+τ = Yt+τ [at:t+τ−1] whenever the observed sequence
of treatments At:t+τ−1 satisfies At:t+τ−1 = at:t+τ−1;
(Positivity) P (As,t = as,t | H1:t = h1:t) > 0 for any
as,t ∈ {0, 1} and feasible realization of history h1:t; (Se-
quential Unconfoundedness) Yt+1:T [at+1:T ] ⊥ At | H1:t,
∀at+1:T ∈ {0, 1}T −t, i.e. at each time step t, the treatment
assignment is independent of future potential outcomes.

Assumption 3.2 (Representation-Based Time Invariance).
There exists a function (or embedding) ϕ : H × A → Z ⊆
Rh that maps (H1:t, At) to a finite-dimensional representa-
tion such that once we condition on z = ϕ(H1:t, At), the
distribution (Xt+1, Yt+1) does not explicitly depend on t.

Formally, for any t, t′ ∈ {1, . . . , T} and z ∈ Z , we have:

p(Xt+1, Yt+1 | ϕ(H1:t, At) = z)
= p(Xt′+1, Yt′+1 | ϕ(H1:t′ , At′) = z).

Assumption 3.1 is standard in longitudinal causal inference
settings (e.g., (Robins et al., 2000; Robins and Hernan, 2008;
Bica et al., 2020; Li et al., 2021; Melnychuk et al., 2022;
Hess et al., 2024)). Assumption 3.2 is specific to the single-
time series setting, where pooling information across time is
essential to enable estimation. We note that the single time-
series setting frequently arises in causal inference, where
assumptions such as stationarity or strict time homogeneity
enable consistent estimation (Bojinov and Shephard, 2019;
Papadogeorgou et al., 2022; Zhou et al., 2024). In contrast,
our representation-based time invariance is weaker: rather
than requiring Xt, Yt themselves to have a time-invariant
distribution, we only assume that, once the history is sum-
marized by ϕ(H1:t, At), the transition to (Xt+1, Yt+1) fol-
lows a single shared mechanism. This approach aligns with
modern time-series causal inference that learn time-invariant
latent embeddings to pool information across time steps
(Lim, 2018; Li et al., 2021; Hess et al., 2024), thus leverag-
ing more data for a single, stable representation rather than
time-dependent parameters.

Identification and G-Computation. We splice our single
time series into multiple “prefixes” of varying lengths such
that for each t ∈ {1, . . . , T − τ}, we define the following

Pτ
t =

(
X1:t+τ , A1:t+τ , Y1:t+τ , V

)
.

Under time-invariance (Assumption 3.2), conditioning on a
suitable embedding of Pτ

t renders the distribution of Yt+τ

independent of t. We will thus write expectations over the
prefixes given history embeddings as

EP
[
Yt+τ

∣∣ ϕ(H1:t, At)
]
,

3
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where t here only identifies the location in the series (i.e. the
segment’s ending point) rather than implying a distinct dis-
tribution. Pooling across t then supplies T − τ conditionally
independent segments from a single time series, enabling
regression-based methods to estimate future outcomes from
(embedded) histories.

Given Pτ
t , we show how to identify CAPOs from observa-

tional data. For τ ≥ 2, future covariates and outcomes (i.e.
Xt+1:t+τ−1, Yt+1:t+τ−1) may influence subsequent treat-
ments, creating time-varying confounding (Coston et al.,
2020). These confounders, shaped by past treatments and
outcomes, can alter future assignments and outcomes, form-
ing feedback loops that simple “condition-on-history” ad-
justments miss. Hence, adjustment—e.g. via iterative G-
computation—is needed to avoid bias. Figure 1 illustrates
these complexities by comparing observational data (left)
and hypothetical interventional data (right) for τ = 2. By
contrast, when τ = 1, conditioning on H1:t is sufficient
under standard assumptions, as no future confounders lie
between At and Yt+1. In other words, the following naive
identification does not generally hold for τ > 1:

E[Yt+τ [at:t+τ−1] | H1:t = h1:t] (2)
̸= E[Yt+τ | H1:t = h1:t, At:t+τ−1 = at:t+τ−1] (3)

To address time-varying confounding, we adapt regression-
based iterative G-computation (Bang and Robins, 2005;
Robins and Hernan, 2008) to the spatiotemporal setting,
providing a systematic way to adjust for evolving con-
founders and achieve unbiased CAPO estimates. We in-
tegrate our single time-series spatiotemporal setting with
the G-computation framework in the following result:

Theorem 3.3 (Identification with G-Computation). Assume
that Assumption 3.1 and Assumption 3.2 hold. Further,
let Ha

1:t+k := (X1:t+k, [A1:t−1, at:t+k−1], Y1:t+k) denote
the history where observed treatments from time t onward
are replaced by at:t+k−1. Define recursively:

Qτ (H1:t+τ−1, At+τ−1)
= EP[Yt+τ | ϕ(H1:t+τ−1, At+τ−1)]

Qτ−1(H1:t+τ−2, At+τ−2)
= EP[Qτ (Ha

1:t+τ−1, at+τ−1) | ϕ(H1:t+τ−2, At+τ−2)]
. . .

Q1(H1:t, At)
= EP[Q2(Ha

1:t+1, at+1) | ϕ(H1:t, At)]

Then:

EP[Yt+τ [at:t+τ−1] | ϕ(H1:t, at) = ϕ(h1:t, at)]
= Q1(h1:t, at)

We provide a proof of Theorem 3.3 in Appendix B. This re-
sult naturally motivates a recursive regression approach for

spatiotemporal CAPO estimation, fitting each Qk(·) in re-
verse order and substituting interventional treatments where
required. In the next section, we detail how our end-to-end
GST-UNet framework implements these ideas, providing a
principled neural solution for time-varying confounding in
spatiotemporal settings.

4. Methodology
To address the challenges of time-varying confounders, spa-
tial dependencies, and temporal carryover in observational
data, we introduce GST-UNet, an end-to-end spatiotempo-
ral neural model. Building on the identification guarantees
in Theorem 3.3 and the single-series assumptions in As-
sumption 3.2, GST-UNet integrates iterative G-computation
with a modular neural architecture to consistently estimate
potential outcomes and treatment effects. We first convert
the iterative G-computation result into a practical, recursive
regression approach for CAPO estimation, before introduc-
ing the GST-UNet design in subsequent subsections.

4.1. Estimating CAPOs with Iterative G-Computation

While Theorem 3.3 motivates a recursive regression algo-
rithm for each Qk (k = 1, . . . , τ ), only Qτ can be directly
estimated from the prefix data. At the next step, Qτ−1
depends on Qτ

(
Ha

1:t+τ−1, at+τ−1
)
—where the observed

treatments At:t+τ−1 are replaced by at:t+τ−1—but such
substituted outcomes are not observed in the prefix data.
Therefore, for k < τ , we propose a procedure where we
generate pseudo-outcomes by predicting with the previously
learned Q̂k+1. Going forward, we use F̂ to denote any
quantity F estimated from data. Formally, let ϕ ∈ Φ be
an embedding satisfying Assumption 3.2, and let Q be our
function class for Qk. We learn the sequence Q̂τ , . . . , Q̂1
from prefix data {Pτ

t : t = 1, . . . , T − τ}, via:

1. Initialization. With the prefix data, fit Q̂τ to predict
Yt+τ from the embedding ϕ(H1:t+τ−1, At+τ−1).

2. Backward recursion. For k = τ − 1, . . . , 1:
(a) Substitute interventions. For each prefix Pτ

t , re-
place At+k by the interventional at+k to form the
modified history Ha

1:t+k.
(b) Generate pseudo-outcomes. Let Ỹt+k+1 =

Q̂k+1
(
Ha

1:t+k, at+k

)
, where Q̂k+1 is the previ-

ously learned function. These Ỹt+k+1 act as sur-
rogates for Yt+k+1 in the prefix data.

(c) Fit Q̂k. Regress Ỹt+k+1 on the current embedding
ϕ

(
H1:t+k−1, At+k−1

)
to learn Q̂k ∈ Q.

3. Final step. Given a new history h1:t and an interven-
tional path at:t+τ−1, we predict

ÊP[Yt+τ [at:t+τ−1] | ϕ(H1:t, at) = ϕ(h1:t, at)]

= Q̂1
(
h1:t, at

)
.

4
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Figure 2. Overview of the GST-UNet architecture. The embedding block (left) is a U-Net augmented with a ConvLSTM layer and
attention gates. Its final feature map is passed to a set of G-heads (right), where each G-head Qk implements iterative G-computation (see
Algorithm 1) to predict the potential outcomes or pseudo-outcomes at step k.

The iterative procedure yields a consistent estimator for the
CAPOs if the Qk’s are estimated consistently from data
(Laan and Robins, 2003). In the following subsections, we
instantiate this procedure in our GST-UNet architecture,
illustrating how to incorporate spatial dependencies and in-
terference into ϕ and each Qk, and implement a streamlined,
end-to-end training strategy that unifies history embeddings
and outcome predictions.

4.2. Model Architecture

The GST-UNet consists of two main components:

1. Spatiotemporal Learning Module. A U-Net-based
network augmented with ConvLSTM and attention gates
for spatiotemporal processing.

2. Neural Causal Module. τ G-computation heads, each
mapping the spatiotemporal features to the final outcome
predictions in the iterative procedure.

We illustrate the GST-UNet architecture in Figure 2 and
describe its main components below.

Spatiotemporal Learning Module. (1) Spatial Module. To
efficiently process high-dimensional spatial data, we em-
ploy U-Net (Ronneberger et al., 2015), a fully convolutional
architecture originally developed for biomedical image seg-
mentation. It employs an encoder-decoder design with skip
connections: the encoder progressively downsamples the
spatial grid through convolution and pooling, while the de-
coder upsamples it back to the original resolution, merging
encoder features at each scale. (2) Temporal Module. U-Net
has limitations in capturing temporal information. To ad-
dress this, we integrate a Convolutional Long Short-Term
Memory (ConvLSTM) layer (Shi et al., 2015) to the U-Net
encoder. This module captures temporal dependencies by

maintaining a hidden state across time steps while aggregat-
ing spatial information through convolutions. After com-
puting the final ConvLSTM state, we append static (time-
invariant) covariates V as additional feature channels, ensur-
ing the subsequent U-Net encoder-decoder has direct access
to both temporal dynamics and static location-specific in-
formation. In the decoder, we incorporate attention gates
(Oktay et al., 2018) to selectively highlight relevant spatial
regions, refining skip connections and emphasizing critical
global or local patterns. The embedding module ultimately
produces a dh-dimensional feature map of size NX × NY ,
capturing essential spatiotemporal context—including in-
terference, spatial confounding, and static covariates—for
downstream G-computation.

Neural Causal Module. We attach τ G-computation heads
to the U-Net’s final feature maps, corresponding to the Qk

estimators in the iterative procedure (see Section 4.1). Each
head can be a small convolutional module or a simple feed-
forward network, depending on how much spatial struc-
ture remains to be captured. The information flow at the
G-computation heads proceeds as follows: each head Qk

(k = 1, . . . , τ ) receives the dh × NX × NY U-Net embed-
ding ϕ̂

(
H1:t+k−1, At+k−1

)
(encompassing spatiotemporal

and static context) and outputs an NX × NY prediction
for that time step. We refer to this as the supervision step,
since Qτ compares its predictions to the real observed out-
comes Yt+τ , anchoring the model in genuine data, while
each Qk<τ compares its predictions to pseudo-outcomes
Ỹt+k+1 provided by Q̂k+1. These pseudo-outcomes arise
in a subsequent generation step, wherein Qk+1 processes
the intervened history ϕ̂

(
Ha

1:t+k, at+k

)
in a detached for-

ward pass (so Q̂k+1 is not updated by Qk’s loss), thereby
creating surrogate targets for Qk. This procedure realizes
the iterative G-computation logic from Section 4.1, enabling

5
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Algorithm 1 GST-UNet Training and Inference

1: Input: Horizon τ , prefix data {Pτ
t }T −τ

t=1 , interventions
at:t+τ−1, curriculum schedule α

(e)
k , total epochs E.

2: Initialize: parameters θ (U-Net embedding + G-heads).
3: for e = 1 . . . E do
4: for k = τ . . . 1 do
5: (Supervision) For each prefix i, predict outcomes:

Ŷ
(i)

t+k = Qk

(
ϕ(H(i)

1:t+k−1, A(i)
t+k−1); θ

)
.

6: (Generation (detached)) For each prefix i, gener-
ate pseudo-outcomes:

Ỹ
(i)

t+k ={
Qk

(
ϕ

(
(Ha

1:t+k−1)(i), a(i)
t+k−1

)
; θ

)
, k < τ,

Y
(i)

t+τ , k = τ.

where the observed At:t+k−2’s were replaced with
at:t+k−2 in the history.

7: end for
8: (Loss aggregation) Compute the overall MSE loss

L(θ; e) = 1
τ

τ∑
k=1

α
(e)
k

∑
i

(
Ŷ

(i)
t+k − Ỹ

(i)
t+k+1

)2
.

9: (Backward pass) Update θ by backpropagation.
10: end for
11: (Inference) Given a h1:t, return Q1(ϕ(h1:t, at); θ̂).

GST-UNet to estimate future outcomes under various coun-
terfactual treatments. By separating the spatiotemporal em-
bedding from the G-heads, we maintain a common represen-
tation for all prefix data (see Assumption 3.2) and flexibly
capture interference and spatial confounding. Each G-head
enforces the proper temporal adjustments to yield bias-free
counterfactual inference.

4.3. Training and Inference

A key obstacle in learning from a single spatiotemporal
series is that we must splice the data into many prefixes
(Assumption 3.2), then estimate all Qk in an iterative G-
computation procedure (Section 4.1). In principle, we could
train each G-head Qk sequentially (from τ down to 1) by
feeding its pseudo-outcomes to the next head. However, this
creates complications when sharing the U-Net embedding
ϕ across all heads: each Qk might attempt to tailor ϕ to its
own objective, leading to misaligned training signals.

Joint Loss and Multi-Task Training. To address this issue,
we employ a joint (or multi-task) training approach (Caru-
ana, 1997; Evgeniou and Pontil, 2004) by aggregating the
loss terms from all G-heads into a single objective, then
backpropagating once per batch. Concretely, for each head

Qk, let Ỹt+k+1 be the real outcomes if k = τ or pseudo-
outcomes (generated by Q̂k+1) if k < τ . Our head-specific
loss is a mean squared error (MSE) over all prefix samples:

Lk(θ) =
T −τ∑
i=1

[
Qk

(
ϕ(H(i)

1:t+k−1, A(i)
t+k−1); θ

)
− Ỹ

(i)
t+k+1

]2
,

where θ encompasses all model parameters (the shared U-
Net embedding ϕ and the G-heads Qk). Let α

(e)
k denote a

head-weight for epoch e. We then form the overall training
objective at epoch e by

L(θ; e) = 1
τ

τ∑
k=1

α
(e)
k Lk(θ). (4)

By summing the losses and performing a single backward
pass, we learn a common embedding ϕ̂ that balances the
needs of all G-heads, rather than fitting each head separately.

Curriculum Training. A naive implementation of (4) –
where we give each G-head an equal weights – can be sub-
optimal: early in training, Qτ (which sees real data) is inac-
curate, and thus the pseudo-outcomes generated for Qk<τ

are effectively noise. Consequently, heads Q1, . . . , Qτ−1
may overfit to poor targets before Qτ has converged, leading
to suboptimal solutions. To mitigate this, we employ a cur-
riculum training approach (Bengio et al., 2009), gradually
increasing the loss weight of earlier heads as Qτ improves.

While many curricula are possible, we adopt a simple
scheme controlled by a single hyperparameter ec (the “cur-
riculum period”) so we can readily tune it. Let p(e) =
min{τ, ⌈e/ec⌉}, which indexes a “phase” based on the
current epoch e. We then define

α
(e)
k =

{
1/p(e), if k ∈ {τ, τ − 1, . . . , τ − p(e) + 1},

0, otherwise.

Hence, during epochs 1 ≤ e ≤ ec (phase p(e) = 1),
only Qτ is active with α

(e)
τ = 1; in the next interval

ec < e ≤ 2ec (phase p(e) = 2), Qτ and Qτ−1 each have
weight 1/2, and so on, until phase τ sets all heads to uni-
form weight 1/τ . For e > τ ec, we continue training with
α

(e)
k = 1/τ across all G-heads for additional joint refine-

ment. This progressive schedule ensures Qτ becomes rea-
sonably accurate on the observed data before earlier heads
rely on its pseudo-outcomes. The single hyperparameter
ec succinctly controls how quickly we introduce each head,
preventing excessive noise in early training.

We also adopt standard neural network practices, including
mini-batch optimization and early stopping, to stabilize
training and mitigate overfitting. At inference time, given a
new history h1:t and an interventional sequence at:t+τ−1,
we compute Q̂1(ϕ(h1:t, at); θ) as our target CAPO estimate.
We sketch the overall training and inference procedure in
Algorithm 1.
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5. Experiments
We evaluate the proposed GST-UNet framework through
two applications. First, we simulate synthetic data that in-
corporates key spatiotemporal causal inference challenges:
interference, spatial confounding, temporal carryover, and
time-varying confounding. Using this synthetic data genera-
tion process (DGP), we compare the GST-UNet algorithm
against several baselines. Next, we demonstrate the utility
of GST-UNet on a real-world dataset analyzing the impact
of wildfire smoke on respiratory hospitalizations during the
2018 California Camp Fire.

Additional details–including exact simulation parameters,
model architecture and execution setups, hyperparameter
selection strategies, and validation procedures–can be found
in Appendix C. Replication code is available at https:
//anonymous.4open.science/r/GSTUNet.

5.1. Synthetic Data

We generate T = 200 time steps of a 64 × 64 (NX × NY )
grid of observational data using the following system:

Xt = α0 + α1Xt−1 + α2At−1 + α3(KX ∗ Xt−1) + ϵX ,

At ∼ Bern
(

σ
(
β1

(
β0 + 1

L

L−1∑
l=0

KA ∗ Xt−l

)))
,

Yt = γ0 + γ1
(
KY A ∗ At−1

)
+ γ2

1
L

L∑
l=1

(
KY X ∗ Xt−l

)
+ γ3Yt−1 + ϵY ,

where dX = 1 (one feature), “∗” denotes a 2D convolution
over the NX × NY grid, KX , KA, KY A, KY X are dk × dk

convolution kernels, L is the number of temporal lags, and
ϵX , ϵY ∼ N (0, 1) are i.i.d. noise terms. Each equation is
evaluated at every location s in the grid, so Xt, At, Yt rep-
resent NX × NY matrices at time t. We choose parameter
values such that the simulation remains stable (i.e., the pro-
cess does not diverge). This data-generating process (DGP)
includes interference and spatial confounding from neigh-
boring cells, as well as temporal carryover. Furthermore,
Xt is a time-varying confounder, since its past values affect
A and Y, while current A influences future X.

A concise example scenario is pollution control measures
influencing health outcomes: At might represent binary in-
terventions (e.g. traffic restrictions or industrial regulations),
Xt could be spatially diffused air quality, and Yt could
track hospital visits or economic indicators. Government
policies reacting to past pollution levels naturally create the
feedback loops modeled here.

We vary β1 to control the strength of time-varying con-
founding. When β1 = 0, Xt does not directly affect
At, eliminating time-varying confounding; larger values

of β1 strengthen the time-varying confounding. For each
β1, we generate ntest = 50 test trajectories from random
initial states, fix their histories h1:t, and simulate 100 po-
tential τ -length futures to average the terminal outcomes
and obtain each true CAPO. We evaluate horizon lengths
τ ∈ {5, 10}. We compare GST-UNet with: (i) UNet+, a
naive variant using U-Net + ConvLSTM + Attention but
no G-computation (the treatments are simply appended as
static channels); and (ii) STCINet (Ali et al., 2024), a spa-
tiotemporal causal forecasting model that similarly lacks
an adjustment for time-varying confounders. Table 1 re-
ports the RMSE ± standard deviation across the mean test
trajectories for β1 ∈ {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. When
β1 = 0 (no time-varying confounding), all methods per-
form similarly. However, as β1 increases, GST-UNet’s error
remains nearly constant, while the baselines degrade con-
siderably, demonstrating increasing bias from time-varying
confounders. Thus, these results highlight the value of GST-
UNet’s iterative G-computation in effectively adjusting for
time-varying confounding in spatiotemporal settings.

5.2. Impact of Wildfires on Respiratory Health

Wildfire smoke has been associated with short-term adverse
respiratory outcomes (Reid et al., 2016b;a; Cascio, 2018;
Cleland et al., 2021; Letellier et al., 2025), with older adults
especially vulnerable (DeFlorio-Barker et al., 2019). Recent
events (e.g., ongoing Los Angeles wildfires) have amplified
concerns about acute health impacts. In 2018, California
experienced multiple severe wildfires (Wikipedia, 2025),
including two major incidents: the Carr Fire (July–August)
and the Camp Fire (November), which significantly wors-
ened air quality across the state.

We analyze daily, county-level data from Letellier et al.
(2025) that include PM2.5 (particulate matter < 2.5 µm),
hospitalization counts for respiratory and cardiovascular
conditions, and weather variables (temperature, precipita-
tion, humidity, radiation, wind), plus population estimates
from the California Department of Finance. Each of the
weather variables can serve as a time-varying confounder
because weather conditions affect future smoke levels and
health outcomes, while also potentially being influenced by
prior smoke levels.

We focus on the period from week 20 to week 48 (May 18–
December 2, 2018), covering both the Carr and Camp fires.
Following standard practice, we label a county as “treated”
on any day it has mean PM2.5 above 10 µg/m3, and we use
the raw hospitalization counts as the outcome (rather than
per-10,000 incidence to avoid instability in small counties).
To represent counties in a spatial grid, we interpolate each
day’s county-level data (treatment, outcome, five covariates)
onto a 40 × 44 latitude–longitude lattice (discarding cells
outside California), yielding a spatiotemporal tensor of size
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Table 1. Comparison of models across horizons (τ ). Values represent RMSE ± standard deviation across mean test trajectories. GST-UNet
(ours) is highlighted in the last row. Bold values indicate the smallest number in each column for each horizon. Relative changes for
GST-UNet compared to the best baseline are shown in green (improvement) or red (decrease).

τ Model β1 = 0.0 β1 = 0.5 β1 = 1.0 β1 = 1.5 β1 = 2.0 β1 = 2.5 β1 = 3.0

5
UNet+ 0.51 ± 0.00 0.62 ± 0.01 0.84 ± 0.01 1.03 ± 0.01 1.10 ± 0.01 1.16 ± 0.01 1.25 ± 0.01
STCINet 0.52 ± 0.00 0.68 ± 0.01 0.93 ± 0.01 1.11 ± 0.01 1.20 ± 0.01 1.33 ± 0.01 1.32 ± 0.01
GST-UNet 0.55 ± 0.01 0.61 ± 0.01 0.60 ± 0.01 0.61 ± 0.01 0.64 ± 0.01 0.58 ± 0.01 0.64 ± 0.01

(+7.8%) (-1.6%) (-28.6%) (-40.8%) (-41.8%) (-50.0%) (-48.8%)

10
UNet+ 0.56 ± 0.00 0.53 ± 0.00 0.68 ± 0.00 0.85 ± 0.00 1.00 ± 0.01 1.02 ± 0.01 1.01 ± 0.01
STCINet 0.57 ± 0.00 0.59 ± 0.00 0.74 ± 0.00 0.86 ± 0.01 1.11 ± 0.01 1.15 ± 0.01 1.26 ± 0.01
GST-UNet 0.50 ± 0.00 0.44 ± 0.01 0.45 ± 0.01 0.57 ± 0.01 0.48 ± 0.01 0.53 ± 0.01 0.49 ± 0.01

(-10.7%) (-16.7%) (-33.8%) (-32.9%) (-52.1%) (-48.0%) (-51.5%)
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Figure 3. (Left) Daily PM2.5 levels across California from May to December 2018, with red lines marking major wildfires. (Center)
Counties exposed to average PM2.5 > 10 µg/m3 during the Camp Fire (red), origin county in dark red. (Right) Factual minus CAPO-
predicted daily respiratory admissions during peak Camp Fire. Hashed areas indicate small-population counties (< 30,000).

203×7×40×44. Interpolation ensures that each grid cell ap-
proximates the region it overlaps (weighted by intersection
area), so the downstream model captures spatial gradients
in PM2.5, weather, and hospitalizations. We train GST-
UNet with a horizon τ = 10. The earlier wildfire period
(Jun–July) is used for validation and hyperparameter tuning.
After model selection, we generate counterfactual predic-
tions for the peak phase of the Camp Fire, November 8–17,
2018. See Appendix C for details on data preprocessing,
interpolation, and masking.

Figure 3 (left) shows the rise in PM2.5 levels during the
mid-late 2018 wildfire season, and (center) highlights coun-
ties with daily PM2.5 > 10 µg/m3. Using GST-UNet, we
estimate the daily CAPOs had the Camp Fire never oc-
curred (i.e., treating all counties as if PM2.5 ≤ 10 µg/m3).
Figure 3 (right) compares these CAPOs to the factual
daily mean incidence (hospitalization cases per 10,000 resi-
dents). Hatching marks low-population counties (< 30,000
compared to > 70,000 for other exposed counties) with
higher uncertainty; we exclude these from the analysis.
Over November 8–17, GST-UNet predicts approximately
4,650 excess respiratory hospitalizations (465 per day)
attributable to the Camp Fire, with the highest incidence

near the fire source. This result is qualitatively consistent
with Letellier et al. (2025), who report around 259 excess
daily cases averaged over November 8–December 5—a
longer window including lower-intensity days, thus yield-
ing a smaller daily estimate. Overall, GST-UNet captures
the spatiotemporal variation in smoke exposure and health
outcomes, illustrating its promise for real-world causal in-
ference in environmental health and policy.

6. Conclusion
We introduced GST-UNet, a neural framework for estimat-
ing causal effects in spatiotemporal settings by combining
a U-Net-based architecture for spatial modeling with itera-
tive G-computation to adjust for time-varying confounders.
GST-UNet addresses key challenges such as interference,
spatial confounding, temporal carryover, and time-varying
confounders. Through simulations, the GST-UNet outper-
formed existing baselines, and in a real-world case study
of wildfire smoke exposure during the 2018 Camp Fire, it
provided fine-grained, location-specific, and credible effect
estimates. These results highlight GST-UNet’s potential
to improve causal inference in fields such as public health,
environmental science, and social policy.
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Impact Statement
This work advances the field of machine learning by de-
veloping a spatiotemporal causal inference framework that
enables more accurate estimation of treatment effects in
complex real-world settings. GST-UNet has broad appli-
cations in public health, environmental science, and social
policy, where understanding intervention effects can inform
evidence-based decision-making. While our method is de-
signed to improve causal inference from observational data,
care must be taken when applying it to high-stakes policy
decisions, ensuring robustness against biases in data collec-
tion and model assumptions. We encourage responsible use,
particularly in applications affecting vulnerable populations.
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A. Extended Literature Review
Classical Spatiotemporal Causal Inference. Early spatiotemporal causal inference methods—including spatial econo-
metrics (Anselin, 2013), difference-in-differences (Keele and Titiunik, 2015), and synthetic controls (Ben-Michael et al.,
2022)—provide useful frameworks for estimating treatment effects across regions but rely on strong assumptions such
as parallel trends or stable treatment assignment. These approaches struggle with interference, nonlinear dependencies,
and time-varying confounders, limiting their applicability in complex settings. More recent classical approaches estimate
average treatment effects across regions or impose structural and modeling assumptions that may not generalize well to
real-world spatiotemporal contexts (Wang, 2021; Christiansen et al., 2022; Papadogeorgou et al., 2022; Zhang and Ning,
2023; Zhou et al., 2024).

Machine Learning for Spatiotemporal Modeling. The rise of large-scale spatiotemporal datasets has led to the adoption
of machine learning models for predictive tasks. Convolutional and recurrent neural networks (Shi et al., 2015; Zhang et al.,
2017) effectively capture spatial and temporal dependencies but lack explicit causal adjustment mechanisms. Graph-based
deep learning methods (Li et al., 2017; Wu et al., 2019) model spatial interactions but typically ignore feedback effects
from time-varying confounders. Some recent work integrates spatial representations for causal inference—e.g., Tec et al.
(2023) incorporate geographic confounders using a UNet-based model—but these methods do not explicitly model iterative
dependencies over time or adjust for time-varying confounders.

Time-Series Causal Inference. In the longitudinal domain, time-series causal inference typically employs recurrent
networks, Transformers, or propensity-based models (Bica et al., 2020; Seedat et al., 2022; Melnychuk et al., 2022), but
these approaches often assume independent time series, overlooking spatial interference and cross-series confounding.
Handling time-varying confounders has relied on marginal structural models (Robins et al., 2000) or iterative G-computation
(Bang and Robins, 2005; Robins and Hernan, 2008), but machine learning adaptations (Lim, 2018; Li et al., 2021; Hess
et al., 2024) continue to assume independent observations, making them ill-suited for fully spatiotemporal settings where
interference is prevalent.

Neural-Based Spatiotemporal Causal Inference. Recent efforts have explored neural models for spatiotemporal causal
inference. Tec et al. (2023) integrate spatial confounding adjustments using a UNet-based framework but do not model
feedback effects from time-varying confounders. The most similar work to ours, Ali et al. (2024), introduces a climate-
focused neural model that shares certain architectural components but is designed primarily for predictive tasks rather than
causal identification, leaving time-varying confounders unaddressed.

Our Contribution. GST-UNet bridges these gaps by combining a U-Net-based architecture for spatiotemporal grids with
iterative G-computation to adjust for time-varying confounders. Unlike prior methods, GST-UNet explicitly accounts for
interference, nonlinear spatial-temporal dynamics, and feedback loops, ensuring valid causal identification under standard
assumptions. This enables fine-grained, location-specific estimates of potential outcomes, improving spatiotemporal causal
inference in domains where observational data is abundant but controlled experiments are infeasible.

B. Proof of Theorem 3.3
We aim to show that under Assumption 3.1 and Assumption 3.2, the CAPOs in Equation (1) can be identified recursively
from a single time series via a sequence of conditional expectations.

Step 1: Recursive decomposition for the intractable expectation We first demonstrate the recursive decomposition of
the intractable expectation in the CAPO definition (Equation (1)). While this expectation is theoretically well-defined, it
cannot be directly estimated in practice due to the limited availability of data. Specifically, we only observe a single time
series, meaning we have just one sample of the history at time t + τ for each t. Nevertheless, as we will show, we can
convert these expectations into expectations over prefix-based segments that allow us to estimate these quantities from the
data.

Starting from E[Yt+τ [at:t+τ−1] | H1:t = h1:t], we have:

E[Yt+τ [at:t+τ−1] | H1:t = h1:t]
= E[Yt+τ [at:t+τ−1] | H1:t = h1:t, At = at] (Sequential ignorability and positivity (Assumption 3.1))

= E
[
E[Yt+τ [at:t+τ−1] | Ha

1:t+1] | H1:t = h1:t, At = at

]
(Law of total probability)
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= E
[
E[Yt+τ [at:t+τ−1] | Ha

1:t+1, At+1 = at+1] | H1:t = h1:t, At = at

]
(Sequential ignorability and positivity)

= E
[
E

[
E[Yt+τ [at:t+τ−1] | Ha

1:t+2]
∣∣ Ha

1:t+1, At+1 = at+1
] ∣∣∣ H1:t = h1:t, At = at

]
(Law of total probability)

= E
[
E

[
E[Yt+τ [at:t+τ−1] | Ha

1:t+2, At+2 = at+2]
∣∣ Ha

1:t+1, At+1 = at+1
] ∣∣∣ H1:t = h1:t, At = at

]
(Sequential ignorability and positivity)

. . .

= E
[

. . .E
[
E[Yt+τ [at:t+τ−1] | Ha

1:t+τ−1, At+τ−1 = at+τ−1]∣∣ Ha
1:t+τ−2, At+τ−2 = at+τ−2

]∣∣ . . .∣∣∣ H1:t = h1:t, At = at

]
(Sequential ignorability and positivity)

= E
[

. . .E
[
E[Yt+τ | Ha

1:t+τ−1, At+τ−1 = at+τ−1]∣∣ Ha
1:t+τ−2, At+τ−2 = at+τ−2

]∣∣ . . .∣∣∣ H1:t = h1:t, At = at

]
(Consistency)

Thus, if we had multiple spatiotemporal time-series samples, we could directly estimate this nested expression from data,
since the right-hand side depends solely on observed quantities, ensuring identifiability.

Step 2: From intractable to prefix-based expectations We now show how to estimate the nested expectations using the
prefix data. First, by Assumption 3.2, we can rewrite the inner-most expectation as

E[Yt+τ | Ha
1:t+τ−1, At+τ−1 = at+τ−1] = EP[Yt+τ | ϕ(Ha

1:t+τ−1, at+τ−1)]
= Qτ (Ha

1:t+τ−1, at+τ−1). (Definition of Qτ )

Thus, by using Assumption 3.1, we can write this expectation over the prefix data which we have many samples of. Now
consider the next nested expectation:

E[Qτ (Ha
1:t+τ−1, at+τ−1) | Ha

1:t+τ−2 = ha
1:t+τ−2, At+τ−2 = at+τ−2]

=
∫

Qτ (ha
1:t+τ−1, at+τ−1)p(xt+τ−1, yt+τ−1 | ha

t+τ−2, at+τ−2)d(xt+τ−1, yt+τ−1)

=
∫

P

Qτ (ha
1:t+τ−1, at+τ−1)p(xt+τ−1, yt+τ−1 | ϕ(ha

t+τ−2, at+τ−2))d(xt+τ−1, yt+τ−1) (Assumption 3.2)

= EP [Qτ (Ha
1:t+τ−1, at+τ−1) | ϕ(Ha

1:t+τ−2, At+τ−2) = ϕ(ha
1:t+τ−2, at+τ−2)]

= Qτ−1(ha
1:t+τ−2, at+τ−2)

Tracing this argument recursively through the nested expectation in Step 1, we obtain:

E[Yt+τ [at:t+τ−1] | H1:t = h1:t] = Q1(h1:t, at),

as desired. Thus, Q1 – which can be estimated from the prefix data – recovers the CAPOs, under our assumptions, even
from a single chain.

C. Experimental Details
In this appendix, we provide further information on the simulation experiments (Section 5.1) and the real-world wildfire
application (Section 5.2), including exact parameter settings, model architecture and execution details, hyperparameter
selection strategies, and validation procedures. All code for generating, preprocessing, and analyzing both the synthetic
and real-world datasets—and for training and evaluating GST-UNet—is available at https://anonymous.4open.
science/r/GSTUNet, with step-by-step replication instructions in the repository’s README.md.
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Figure 4. Samples from the DGP at t = 100, comparing feature X100 (left), intervention A100 (center), and outcome Y101 (right) for
varying β1 ∈ {0.0, 1.0, 2.0}.

For both applications, GST-UNet employs a U-Net backbone with a single ConvLSTM layer (hidden dimension 32) and a
contracting-expanding path of channel sizes 16 → 32 → 64 → 128 → 256. The G-computation heads are implemented
as shallow feed-forward neural networks that operate on the U-Net feature maps at each grid cell for G-computation. In
practice, to ensure stable ConvLSTM training and reduce computational overhead, we truncate the input history to a fixed
length. All neural networks are implemented via the nn module in PyTorch (Paszke et al., 2019). Experiments were
conducted on an NVIDIA A100 (Ampere) GPU using the Perlmutter system at the National Energy Research Scientific
Computing Center (NERSC). The synthetic experiments required roughly 55 minutes per hyperparameter set, while the
wildfire experiment completed in about 5 minutes.

C.1. Synthetic Experiments

Data Simulation Process. For our primary simulation experiments, we generate T = 200 time steps on a 64 × 64 grid. The
simulation parameters in the generating equations

Xt = α0 + α1Xt−1 + α2At−1 + α3(KX ∗ Xt−1) + ϵX ,

At ∼ Bern
(

σ
(
β1

(
β0 + 1

L

L−1∑
l=0

KA ∗ Xt−l

)))
,

Yt = γ0 + γ1
(
KY A ∗ At−1

)
+ γ2

1
L

L∑
l=1

(
KY X ∗ Xt−l

)
+ γ3Yt−1 + ϵY ,
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Table 2. Hyperparameters and their ranges. We boldface the values that provided the best validation performance.

Hyperparameter Model(s) Value Range

Batch size All models {2, 4, 8}
Learning rate All models {10−4, 5 × 10−4, 10−3}
Scheduler patience All models {3, 5, 10}
Early stopping patience All models {5, 10}
Curriculum period GST-UNet {1, 3, 5, 7}
Curriculum learning rate GST-UNet {10−4, 5 × 10−4, 10−3}
UNet output dim dh GST-UNet {8, 16, 32}
G-head hidden size GST-UNet {8, 16}
G-head layers GST-UNet {1, 2, 3}

are given by:

• Xt:

α0 = 0.5, α1 = 0.5, α2 = −2.0, α3 = 0.2, KX =

 0 0.45 0
0.15 0 0.35

0 0.05 0

 .

where KX influences how X diffuses across neighboring cells, with an asymmetry due to advection.
• At:

β0 = −1.0, β1 ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, KA = 1
16

1.0 1.0 1.0
1.0 8.0 1.0
1.0 1.0 1.0

 .

• Yt:

γ0 = 2.0, γ1 = 1.5, γ2 = 0.5, γ3 = 0.5, KY X = 1
16

1.0 1.0 1.0
1.0 8.0 1.0
1.0 1.0 1.0

 , KY A = 1
16

1.0 1.0 1.0
1.0 8.0 1.0
1.0 1.0 1.0

 .

We use L = 5 temporal lags for X and Y, a seed of 42 for reproducibility. See Figure 4 for representative t = 100 snapshots
of X100, A100, and Y101 under varying β1.

For each β1, we first generate a factual dataset of length T = 200 (i.e., {(Xt, At, Yt)}200
t=1). We then create ntest = 50 test

histories of length lH = 10. For each test history, we simulate 100 trajectories under a randomly chosen (yet fixed over
the test data) counterfactual intervention of length τ = 10, and average the outcomes at each step to approximate the true
CAPOs. This procedure yields a final test set of shape ntest × (lH + τ + 1) × 64 × 64, i.e., 50 × 21 × 64 × 64.

Neural Architectures. The GST-UNet comprises a single ConvLSTM layer (hidden dimension 32), followed by a U-Net
with channel sizes 16→32→64→128→256. Its G-computation heads are shallow feed-forward networks operating on
the final U-Net feature maps at each grid cell; both the U-Net’s output dimension (dh) and the G-head architecture (number
of layers, hidden size) are treated as hyperparameters. The UNet+ baseline uses the same ConvLSTM+U-Net backbone as
GST-UNet but outputs a single channel (dh = 1), omitting any G-computation. For direct comparison, we also implement
STCINet (Ali et al., 2024) with an identical ConvLSTM+U-Net backbone, and retaining their original Latent Factor Model
(LFM) details.

Training Details. We randomly initialize all model parameters (GST-UNet and baselines) with Xavier uniform weights (Glo-
rot and Bengio, 2010). We use the Adam optimizer (Kingma, 2014) with an initial learning rate, halving it whenever
the validation loss plateaus for a specified scheduler patience. To mitigate overfitting, we adopt early stopping when the
validation loss fails to improve for a specified early stopping patience epochs. Validation uses 40 of the 190 training prefixes,
and the total training is capped at 100 epochs. We tune the following hyperparameters: (i) batch size, learning rate, scheduler
patience, and early stopping patience (common to all models); (ii) for GST-UNet, the curriculum period and learning rate for
curriculum phases, the U-Net output dimension dh, and the number and width of hidden layers in the feed-forward G-heads.
Table 2 lists the hyperparameter ranges considered, with the values yielding the best validation performance in bold.
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Figure 5. (Left) Daily respiratory illness incidence (cases per 10,000). (Center) Weekly aggregated incidence. (Right) Average daily
PM2.5 during the Camp Fire.
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Figure 6. An example of county-level (left) vs. grid-interpolated (right) PM2.5 levels on November 18 (during the Camp Fire). The grid
interpolation produces a 40 × 44 lattice of area-weighted estimates aligned with our spatiotemporal framework.

Evaluation Procedure. We evaluate each model by averaging the root mean square error (RMSE) of the estimated CAPOs
against ground truth across 50 test trajectories. Table 1 in the main text reports RMSE ± standard deviation for horizon
lengths τ ∈ {5, 10} and β1 ∈ {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

C.2. Wildfire Application

Data Preprocessing and Interpolation We utilize 2018 daily county-level PM2.5, respiratory/cardiovascular hospital-
izations, weather variables (temperature, precipitation, humidity, radiation, wind) from Letellier et al. (2025), along with
population data from the California Department of Finance. Our study period spans weeks 20–48 (May 18–December 2,
2018), covering both the Carr and Camp fires. As illustrated in Figure 5, daily and weekly aggregated respiratory illness
rates rise around these events, while PM2.5 levels also surge during the Camp Fire.

To align with our spatiotemporal framework, we use geopandas (Jordahl et al., 2020) to interpolate county-level covariates,
PM2.5, and hospitalizations onto a latitude–longitude grid from 32◦N to 42◦N latitude and -125◦ to -114◦ longitude, at a
resolution of 0.25◦. Each grid cell’s values are an area-weighted average of the counties it intersects, yielding a 40 × 44
spatial lattice. We mask out non-California cells by setting them to zero, thus obtaining a consistent dataset for further
analysis. As an example, Figure 6 illustrates how the raw county-level data compare to the interpolated grid for PM2.5 on
November 18.

Model Training and Validation We train GST-UNet with prediction horizon τ = 10 days. The loss function is MSE with
two key modifications: (1) we mask grid cells outside California’s boundaries to exclude them from loss computation, and
(2) we apply cell-specific weights proportional to the number of cells per county to prevent bias towards geographically
larger counties. For validation and hyperparameter tuning, we use data from the first 50 days of the wildfire season. The
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GST-UNet hyperparameters are: batch size = 40, learning rate = 5 × 10−4, scheduler patience = 5, early stopping patience
= 10, curriculum period = 5, curriculum learning rate = 5 × 10−4, UNet output dimension dh = 16, G-head hidden
layer size = 8, and G-head layers = 1. Using this configuration, we generate counterfactual predictions for the Camp
Fire peak period (November 8–17) by iteratively applying the trained model with increasing history lengths. We note that
counties with populations below 20,000–30,000 can yield unreliable incidence rate estimates, given baseline daily rates of
approximately 4 cases per 10,000 individuals. In Figure 3, we denote these high-uncertainty counties with hatched markings.
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